Skip to main content

Advertisement

Log in

Recycle of industrial waste: a new method of applying the paint residue to supercapacitors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, paint residue (PR), a kind of industrial waste, is firstly used as a raw material for the synthesis of the activated carbon (AC) for supercapacitors via a simple and traditional two-step strategy before rinsing. The hydrofluoric acid greatly affects the structure of the AC, thereby affecting the performance of the supercapacitor. As evaluated in a three-electrode 6.0 M KOH system, the material exhibits a high gravimetric capacitance of 254 F g−1 at a current density of 1.0 A g−1, and excellent cycling stability with 100% retention after 10000 cycles. A voltage window of 0–1.4 V due to its high oxygen and heteroatom contents in a symmetrical supercapacitor from PR, which demonstrates a comparatively higher energy density of 15.22 Wh kg−1 at a power density of 1081 W kg−1, with good rate capability of 70% retention at 10 A g−1. The favorable capacitive performances make this environmentally unfriendly residue PR act as a new resource of carbonaceous materials for high-performance supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Y.G. Wang, Y.Y. Xia, Recent progress in supercapacitors: from materials design to system construction. Adv. Mater. 25(37), 5336–5342 (2013)

    CAS  Google Scholar 

  2. Y.Y. Lv, Y. Zhou, Z.Q. Shao, Y.H. Liu, J. Wei, Z.Q. Ye, Nanocellulose-derived carbon nanosphere fibers-based nanohybrid aerogel for high-performance all-solid-state flexible supercapacitors. J. Mater. Sci. 30(9), 8585–8594 (2019)

    CAS  Google Scholar 

  3. H.H. Liang, T. Sun, L. Xu, C.Y. Sun, D.W. Wang, A universal strategy towards porous carbons with ultrahigh specific surface area for high-performance symmetric supercapacitor applications. J. Mater. Sci. 30(14), 13636–13646 (2019)

    CAS  Google Scholar 

  4. P. Simon, Y. Gogotsi, Capacitive energy storage in nanostructured carbon-electrolyte systems. Acc. Chem. Res. 46(5), 1094–1103 (2013)

    CAS  Google Scholar 

  5. W. Qian, Z.Q. Chen, S. Cottingham, W.A. Merrill, N.A. Swartz, A.M. Goforth, T.L. Clare, J. Jiao, Surfactant-free hybridization of transition metal oxide nanoparticles with conductive graphene for high-performance supercapacitor. Green Chem. 14(2), 371–377 (2012)

    CAS  Google Scholar 

  6. B. Lu, Z. Xiao, H. Zhu, W. Xiao, W. Wu, D. Wang, Enhanced capacitive properties of commercial activated carbon by re-activation in molten carbonates. J. Power Sources 298, 74–82 (2015)

    CAS  Google Scholar 

  7. X. Hu, K. Nango, L. Bao, T.T. Li, M.D.M. Hasan, C.Z. Li, High yields of solid carbonaceous materials from biomass. Green Chem. 21(5), 1128–1140 (2019)

    CAS  Google Scholar 

  8. P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343(6176), 1210–1211 (2014)

    CAS  Google Scholar 

  9. F. Beguin, V. Presser, A. Balducci, E. Frackowiak, Carbons and electrolytes for advanced supercapacitors. Adv. Mater. 26(14), 2219–2251 (2014)

    CAS  Google Scholar 

  10. Y.P. Zhai, Y.Q. Dou, D.Y. Zhao, P.F. Fulvio, R.T. Mayes, S. Dai, Carbon materials for chemical capacitive energy storage. Adv. Mater. 23(42), 4828–4850 (2011)

    CAS  Google Scholar 

  11. J.T. Zhang, J.W. Jiang, H.L. Li, X.S. Zhao, A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes. Energy Environ. Sci. 4(10), 4009–4015 (2011)

    CAS  Google Scholar 

  12. Y.W. Zhu, S. Murali, M.D. Stoller, K.J. Ganesh, W.W. Cai, P.J. Ferreira, A. Pirkle, R.M. Wallace, K.A. Cychosz, M. Thommes, D. Su, E.A. Stach, R.S. Ruoff, Carbon-based supercapacitors produced by activation of graphene. Science 332(6037), 1537–1541 (2011)

    CAS  Google Scholar 

  13. D. Pech, M. Brunet, H. Durou, P.H. Huang, V. Mochalin, Y. Gogotsi, P.L. Taberna, P. Simon, Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. Nat. Nanotechnol. 5(9), 651–654 (2010)

    CAS  Google Scholar 

  14. B. Yao, L.Y. Yuan, X. Xiao, J. Zhang, Y.Y. Qi, J. Zhou, J. Zhou, B. Hu, W. Chen, Paper-based solid-state supercapacitors with pencil-drawing graphite/polyaniline networks hybrid electrodes. Nano Energy 2(6), 1071–1078 (2013)

    CAS  Google Scholar 

  15. Z.Y. Yu, L.F. Chen, L.T. Song, Y.W. Zhu, H.X. Ji, S.H. Yu, Free-standing boron and oxygen co-doped carbon nanofiber films for large volumetric capacitance and high rate capability supercapacitors. Nano Energy 15, 235–243 (2015)

    CAS  Google Scholar 

  16. Y.J. Li, G.L. Wang, T. Wei, Z.J. Fan, P. Yan, Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19, 165–175 (2016)

    CAS  Google Scholar 

  17. Y.M. Wang, X.J. Lin, T. Liu, H. Chen, S. Chen, Z.J. Jiang, J. Liu, J.L. Huang, M.L. Liu, Wood-derived hierarchically porous electrodes for high-performance all-solid-state supercapacitors. Adv. Funct. Mater. 28(52), 1806207 (2018)

    Google Scholar 

  18. C. Wu, S.R. Yang, J.J. Cai, Q.B. Zhang, Y. Zhu, K.L. Zhang, Activated microporous carbon derived from almond shells for high energy density asymmetric supercapacitors. ACS Appl. Mater. Inter. 8(24), 15288–15296 (2016)

    CAS  Google Scholar 

  19. S.Y. Gao, K.R. Geng, H.Y. Liu, X.J. Wei, M. Zhang, P. Wang, J.J. Wang, Transforming organic-rich amaranthus waste into nitrogen-doped carbon with superior performance of the oxygen reduction reaction. Energ Environ. Sci. 8(1), 221–229 (2015)

    CAS  Google Scholar 

  20. M.Q. Wang, J. Zhou, S.J. Wu, H. Wang, W. Yang, Green synthesis of capacitive carbon derived from Platanus catkins with high energy density. J. Mater. Sci. 30(4), 4184–4195 (2019)

    CAS  Google Scholar 

  21. L.L. Qiang, Z.A. Hu, Z.M. Li, Y.Y. Yang, X.T. Wang, Y. Zhou, X.Y. Zhang, W.B. Wang, Q. Wang, Hierarchical porous biomass carbon derived from cypress coats for high energy supercapacitors. J. Mater. Sci. 30(8), 7324–7336 (2019)

    CAS  Google Scholar 

  22. C.T. Chen, S. Wang, Z.G. Peng, G.H. Ao, Hierarchical porous architecture on Ni foam created via an oxidization-reduction process and its application for supercapacitor. J. Mater. Sci. 30(12), 11231–11238 (2019)

    CAS  Google Scholar 

  23. P. Xing, B.Z. Ma, C.Y. Wang, L. Wang, Y.Q. Chen, A simple and effective process for recycling zinc-rich paint residue. Waste Manage. 76, 234–241 (2018)

    CAS  Google Scholar 

  24. J.K. Min, S. Zhang, J.X. Li, R. Klingeler, X. Wen, X.C. Chen, X. Zhao, T. Tang, E. Mijowska, From polystyrene waste to porous carbon flake and potential application in supercapacitor. Waste Manage. 85, 333–340 (2019)

    CAS  Google Scholar 

  25. C.M. Ashraf, K.M. Anilkumar, B. Jinisha, M. Manoj, V.S. Pradeep, S. Jayalekshmi, Acid washed, steam activated, coconut shell derived carbon for high power supercapacitor applications. J. Electrochem. Soc. 165(5), A900–A909 (2018)

    CAS  Google Scholar 

  26. J.L. Rivera, T. Reyes-Carrillo, A framework for environmental and energy analysis of the automobile painting process. Proc. CIRP 15, 171–175 (2014)

    Google Scholar 

  27. A. Pedram, N. Bin Yusoff, O.E. Udoncy, A.B. Mahat, P. Pedram, A. Babalola, Integrated forward and reverse supply chain: a tire case study. Waste Manage. 60, 460–470 (2017)

    Google Scholar 

  28. Q.L. Ma, Y.F. Yu, M. Sindoro, A.G. Fane, R. Wang, H. Zhang, Carbon-based functional materials derived from waste for water remediation and energy storage. Adv. Mater. 29(13), 1605361 (2017)

    Google Scholar 

  29. C.F. Xue, L. Feng, Y.A. Hao, F.J. Yang, Q. Zhang, X.L. Ma, X.G. Hao, Acid-free synthesis of oxygen-enriched electroactive carbon with unique square pores from salted seaweed for robust supercapacitor with attractive energy density. Green Chem. 20(21), 4983–4994 (2018)

    CAS  Google Scholar 

  30. X.J. He, N. Zhao, J.S. Qiu, N. Xiao, M.X. Yu, C. Yu, X.Y. Zhang, M.D. Zheng, Synthesis of hierarchical porous carbons for supercapacitors from coal tar pitch with nano-Fe2O3 as template and activation agent coupled with KOH activation. J. Mater. Chem. A 1(33), 9440–9448 (2013)

    CAS  Google Scholar 

  31. I.I. Gurten Inal, S.M. Holmes, E. Yagmur, N. Ermumcu, A. Banford, Z. Aktas, The supercapacitor performance of hierarchical porous activated carbon electrodes synthesised from demineralised (waste) cumin plant by microwave pretreatment. J. Ind. Eng. Chem. 61, 124–132 (2018)

    CAS  Google Scholar 

  32. C. Wang, J. Wang, W.T. Wu, J. Qian, S.M. Song, Z.B. Yue, Feasibility of activated carbon derived from anaerobic digester residues for supercapacitors. J. Power Sources 412, 683–688 (2019)

    CAS  Google Scholar 

  33. J.S. Xia, N. Zhang, S.K. Chong, D. Li, Y. Chen, C.H. Sun, Three-dimensional porous graphene-like sheets synthesized from biocarbon via low-temperature graphitization for a supercapacitor. Green Chem. 20(3), 694–700 (2018)

    CAS  Google Scholar 

  34. L. Sun, Y. Fu, C.G. Tian, Y. Yang, L. Wang, J. Yin, J. Ma, R.H. Wang, H.G. Fu, Isolated boron and nitrogen sites on porous graphitic carbon synthesized from nitrogen-containing chitosan for supercapacitors. ChemSusChem 7(6), 1637–1646 (2014)

    CAS  Google Scholar 

  35. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, A.K. Geim, Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97(18), 187401 (2006)

    CAS  Google Scholar 

  36. A.C. Ferrari, D.M. Basko, Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol. 8(4), 235–246 (2013)

    CAS  Google Scholar 

  37. Y.N. Gong, D.L. Li, C.Z. Luo, Q. Fu, C.X. Pan, Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem. 19(17), 4132–4140 (2017)

    CAS  Google Scholar 

  38. H. Ganegoda, D.S. Jensen, D. Olive, L.D. Cheng, C.U. Segre, M.R. Linford, J. Terry, Photoemission studies of fluorine functionalized porous graphitic carbon. J. Appl. Phys. 111(5), 053705 (2012)

    Google Scholar 

  39. T.E. Rufford, D. Hulicova-Jurcakova, Z.H. Zhu, G.Q. Lu, Nanoporous carbon electrode from waste coffee beans for high performance supercapacitors. Electrochem. Commun. 10(10), 1594–1597 (2008)

    CAS  Google Scholar 

  40. Y.J. Kim, Y. Abe, T. Yanaglura, K.C. Park, M. Shimizu, T. Iwazaki, S. Nakagawa, M. Endo, M.S. Dresselhaus, Easy preparation of nitrogen-enriched carbon materials from peptides of silk fibroins and their use to produce a high volumetric energy density in supercapacitors. Carbon 45(10), 2116–2125 (2007)

    CAS  Google Scholar 

  41. R. Pietrzak, XPS study and physico-chemical properties of nitrogen-enriched microporous activated carbon from high volatile bituminous coal. Fuel 88(10), 1871–1877 (2009)

    CAS  Google Scholar 

  42. L.F. Chen, Z.Y. Yu, J.J. Wang, Q.X. Li, Z.Q. Tan, Y.W. Zhu, S.H. Yu, Metal-like fluorine-doped beta-FeOOH nanorods grown on carbon cloth for scalable high-performance supercapacitors. Nano Energy 11, 119–128 (2015)

    CAS  Google Scholar 

  43. Y.S. Hu, A. Kleiman-Shwarsctein, G.D. Stucky, E.W. McFarland, Improved photoelectrochemical performance of Ti-doped alpha-Fe2O3 thin films by surface modification with fluoride. Chem. Commun. 19, 2652–2654 (2009)

    Google Scholar 

  44. Z. Li, Z.W. Xu, X.H. Tan, H.L. Wang, C.M.B. Holt, T. Stephenson, B.C. Olsen, D. Mitlin, Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ. Sci. 6(3), 871–878 (2013)

    CAS  Google Scholar 

  45. Y.R. Nian, H.S. Teng, Nitric acid modification of activated carbon electrodes for improvement of electrochemical capacitance. J. Electrochem. Soc. 149(8), A1008–A1014 (2002)

    CAS  Google Scholar 

  46. D. Puthusseri, V. Aravindan, S. Madhavi, S. Ogale, 3D micro-porous conducting carbon beehive by single step polymer carbonization for high performance supercapacitors: the magic of in situ porogen formation. Energy Environ. Sci. 7(2), 728–735 (2014)

    CAS  Google Scholar 

  47. X.M. Fan, C. Yu, Z. Ling, J. Yang, J.S. Qiu, Hydrothermal synthesis of phosphate-functionalized carbon nanotube-containing carbon composites for supercapacitors with highly stable performance. ACS Appl. Mater. Inter. 5(6), 2104–2110 (2013)

    CAS  Google Scholar 

  48. Y.L. Shao, M.F. El-Kady, C.W. Lin, G.Z. Zhu, K.L. Marsh, J.Y. Hwang, Q.H. Zhang, Y.G. Li, H.Z. Wang, R.B. Kaner, 3D freeze-casting of cellular graphene films for ultrahigh-power-density supercapacitors. Adv. Mater. 28(31), 6719–6726 (2016)

    CAS  Google Scholar 

  49. H.T. Liu, P. He, Z.Y. Li, Y. Liu, J.H. Li, A novel nickel-based mixed rare-earth oxide/activated carbon supercapacitor using room temperature ionic liquid electrolyte. Electrochim. Acta 51(10), 1925–1931 (2006)

    CAS  Google Scholar 

  50. E. Frackowiak, F. Beguin, Carbon materials for the electrochemical storage of energy in capacitors. Carbon 39(6), 937–950 (2001)

    CAS  Google Scholar 

  51. L.J. Xie, G.H. Sun, F.Y. Su, X.Q. Guo, Q.Q. Kong, X.M. Li, X.H. Huang, L. Wan, W. Song, K.X. Li, C.X. Lv, C.M. Chen, Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor applications. J. Mater. Chem. A 4(5), 1637–1646 (2016)

    CAS  Google Scholar 

  52. Y.T. Luan, L. Wang, S.E. Guo, B.J. Jiang, D.D. Zhao, H.J. Yan, C.G. Tian, H.G. Fu, A hierarchical porous carbon material from a loofah sponge network for high performance supercapacitors. RSC Adv. 5(53), 42430–42437 (2015)

    CAS  Google Scholar 

  53. J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313(5794), 1760–1763 (2006)

    CAS  Google Scholar 

  54. D.L. He, W. Zhao, P. Li, Z.W. Liu, H.Y. Wu, L. Liu, K. Han, L. Liu, Q. Wan, F.K. Butt, X.H. Qu, Bifunctional biomass-derived 3D nitrogen-doped porous carbon for oxygen reduction reaction and solid-state supercapacitor. Appl. Surf. Sci. 465, 303–312 (2019)

    CAS  Google Scholar 

  55. G.F. Ma, F.T. Ran, H. Peng, K.J. Sun, Z.G. Zhang, Q. Yanga, Z.Q. Lei, Nitrogen-doped porous carbon obtained via one-step carbonizing biowaste soybean curd residue for supercapacitor applications. RSC Adv. 5(101), 83129–83138 (2015)

    CAS  Google Scholar 

  56. X.M. Guo, B.X. Feng, L.G. Gai, J.H. Zhou, Reduced graphene oxide/polymer dots-based flexible symmetric supercapacitors delivering an output potential of 1.7 V with electrochemical charge injection. Electrochim. Acta 293, 399–407 (2019)

    CAS  Google Scholar 

  57. L. Fang, Y.P. Xie, Y.Y. Wang, Z.W. Zhang, P.F. Liu, N.A. Cheng, J.F. Liu, Y.C. Tu, H.B. Zhao, J.J. Zhang, Facile synthesis of hierarchical porous carbon nanorods for supercapacitors application. Appl. Surf. Sci. 464, 479–487 (2019)

    CAS  Google Scholar 

  58. I.I. Misnon, N.K.M. Zain, R. Jose, Conversion of oil palm kernel shell biomass to activated carbon for supercapacitor electrode application. Waste Biomass Valori. 10(6), 1731–1740 (2019)

    CAS  Google Scholar 

Download references

Acknowledgement

We acknowledge financial support from the special funds for basic scientific research operations of central universities (No. 2019XKQYMS06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yaojian Ren.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, H., Ren, Y., Sui, Y. et al. Recycle of industrial waste: a new method of applying the paint residue to supercapacitors. J Mater Sci: Mater Electron 31, 274–285 (2020). https://doi.org/10.1007/s10854-019-02488-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02488-2

Navigation