Skip to main content
Log in

Experimental and theoretical studies of CuInS2 thin films for photovoltaic applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CuInS2 thin films were synthesized by spray pyrolysis. The films were characterized using X-ray diffraction, Raman spectroscopy, and spectrophotometer (UV–Vis). The structural studies reveal that CuInS2 thin films are of chalcopyrite phase. The complex dielectric constants (εr and εi), the refractive index (n), extinction coefficient (k), absorption coefficient (α), gap energy (Eg), and the optical conductivity (σ) were calculated. The obtained results are suitable for photovoltaic applications. To confirm our experimental results, a series of Ab initio calculations was performed. The generalized gradient approximation and the mBJ potential for the exchange–correlation potential have been used to calculate the band structure, density of states, charge density, and optical properties of CuInS2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. M. Ajili, M. Castagn, N.K. Turki, Characteristics of CuIn1−xGaxS2 thin films synthesized by chemical spray pyrolysis. J. Lumin. 150, 1–7 (2014). https://doi.org/10.1016/j.jlumin.2013.12.059

    Article  CAS  Google Scholar 

  2. S. Vadivel, K. Srinivasan, K.R. Murali, Pulse electrodeposited copper indium sulfide films. Mater. Sci. Semicond. Process. 16, 765–770 (2013). https://doi.org/10.1016/j.mssp.2012.12.024

    Article  CAS  Google Scholar 

  3. J.L. Shay, J.H. Wernick, Ternary Chalcopyrite Semiconductors: Growth, Electronic Properties, and Applications. Pergamon, Oxford (1975). https://www.elsevier.com/books/ternarychalcopyrite-semiconductors-growth-electronic-properties-andapplications/shay/978-0-08017883-7

    Chapter  Google Scholar 

  4. M.A. Sangamesha, K. Pushpalatha, G.L. Shekar, Effect of Co doping on CIS2 thin films. Chin. J. Phys. 56, 1147–1157 (2018). https://doi.org/10.1016/j.cjph.2018.04.019

    Article  CAS  Google Scholar 

  5. I. Oja, M. Nanu, A. Katerski, M. Krunks, A. Mere, J. Raudoja, A. Goossens, Crystal quality studies of CuInS2 films prepared by spray pyrolysis. Thin Solid Films 480–481, 82–86 (2005). https://doi.org/10.1016/j.tsf.2004.11.013

    Article  CAS  Google Scholar 

  6. F. Aslan, M.Z. Zarbali, B. Yesilata, J.H. Mutlu, Effects of Cu/In ratio and annealing temperature on physical properties of dip-coated CuInS2 thin films. Mater. Sci. Semicond. Process. 16, 138–142 (2013). https://doi.org/10.1016/j.mssp.2012.05.015

    Article  CAS  Google Scholar 

  7. Hung-Hua Sheu, Yu-Tien Hsu, Shun-Yi Jian, Shih-Chang Liang, The effect of Cu concentration in the photovoltaic efficiency of CIGS solar cells prepared by co-evaporation technique. Vacuum 131, 278–284 (2016). https://doi.org/10.1016/j.vacuum.2016.07.008

    Article  CAS  Google Scholar 

  8. Hsien-Chung Huang, Chao-Sung Lin, Wei-Che Chang, Electrodeposition of CIS films on the Mo back electrodes with different crystallinities. Electrochim. Acta 75, 20–27 (2012). https://doi.org/10.1016/j.electacta.2012.04.162

    Article  CAS  Google Scholar 

  9. Kai Siemer, Jo Klaer, Ilka Luck, Jurgen Bruns, Reiner Klenk, Dieter Braunig, Efficient CuInS2 solar cells from a rapid thermal process (RTP). Sol. Energy Mater. Sol. Cells 67, 159–166 (2001). https://doi.org/10.1016/S0927-0248(00)00276-2

    Article  CAS  Google Scholar 

  10. C. Mahendran, N. Suriyanarayanan, Effect of Bi incorporation and temperature on the properties of sprayed CuInS2 thin films. Phys. B 408, 62–67 (2013). https://doi.org/10.1016/j.physb.2012.08.045

    Article  CAS  Google Scholar 

  11. M. Fuchs, M. Scheffler, Ab initio pseudopotentials for electronic structure calculations of poly-atomic systems using density-functional theory. Comput. Phys. Commun. 119, 67–98 (1999). https://doi.org/10.1016/S0010-4655(98)00201-X

    Article  CAS  Google Scholar 

  12. M.D. Feit, J.A. Fleck Jr., A. Steiger, Solution of the Schrodinger equation by a spectral method. J. Comput. Phys. 47, 412–433 (1982). https://doi.org/10.1016/0021-9991(82)90091-2

    Article  CAS  Google Scholar 

  13. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowski, F. Tran, L.D. Marks: WIEN2k, an augmented plane wave + local orbitals program for calculating crystal properties, revised edition WIEN2k 18.2 (Release 07/17/2018), ISBN 3-9501031-1-2. http://susi.theochem.tuwien.ac.at/reguser/textbooks/usersguide.pdf

  14. P. Dufek, P. Blaha, K. Schwarz, Theoretical investigation of the pressure-induced metallization and the collapse of the antiferromagnetic states in NiI2. Phys. Rev. B 51, 4122–4127 (1995). https://doi.org/10.1103/PhysRevB.51.4122

    Article  CAS  Google Scholar 

  15. M. Yousaf, M.A. Saeed, A.R.M. Isa, H.A.R. Aliabad, M.R. Sahar, An insight into the structural, electronic and transport characteristics of XIn2S4 (X = Zn, Hg) thiospinels using a highly accurate all-electron FPLAPW + Lo method. Chin. Phys. Lett. 30(077402), 1–5 (2013). https://doi.org/10.1088/0256-307X/30/7/077402

    Article  CAS  Google Scholar 

  16. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965). https://doi.org/10.1103/PhysRev.140.A1133

    Article  Google Scholar 

  17. Dong-Yeup Lee, SeJun Park, JunHo Kim, Structural analysis of CIGS film prepared by chemical spray deposition. Curr. Appl. Phys. 11, S88–S92 (2011). https://doi.org/10.1016/j.cap.2010.11.089

    Article  Google Scholar 

  18. C. Mahendran, N. Suriyanarayanan, Synthesis and characterization of sprayed Zn-doped polycrystalline CuInS2 thin films. Optik 124, 5089–5094 (2013). https://doi.org/10.1016/j.ijleo.2013.03.034

    Article  CAS  Google Scholar 

  19. K. Mageshwari, R. Sathyamoorthy, Physical properties of nanocrystalline CuO thin films prepared by the SILAR method. Mater. Sci. Semicond. Process. 16, 337–343 (2013). https://doi.org/10.1016/j.mssp.2012.09.016

    Article  CAS  Google Scholar 

  20. M. Sahal, B. Mar, M. Mollar, CuInS2 thin films obtained by spray pyrolysis for photovoltaic applications. Thin Solid Films 517, 2202–2204 (2009). https://doi.org/10.1016/j.tsf.2008.10.131

    Article  CAS  Google Scholar 

  21. T. Gurel, R. Eryigit, Adiabatic bond charge model for lattice dynamics of ternary chalcopyrite semiconductors. Cryst. Res. Technol. 41, 83–91 (2006). https://doi.org/10.1002/crat.200410536

    Article  CAS  Google Scholar 

  22. F.W. Ohrendorf, H. Haeuseler, Lattice dynamics of chalcopyrite type compounds. Part III. Rigid ion model calculations. Cryst. Res. Technol. 34, 363–378 (1999). https://doi.org/10.1002/(SICI)1521-4079(199903)34:3<363::AID-CRAT363>3.0.CO;2-Q

    Article  CAS  Google Scholar 

  23. A.V. Kopytov, A.V. Kosobutsky, Ab initio calculations of the vibrational spectra of AgInSe2 and AgInTe2. Phys. Solid State 51, 2115–2120 (2009). https://doi.org/10.1134/S1063783409100217

    Article  CAS  Google Scholar 

  24. Wu Kunjie, Deliang Wang, Temperature-dependent Raman investigation of CuInS2 with mixed phases of chalcopyrite and CuAu. Phys. Status Solidi A 208, 2730–2736 (2011). https://doi.org/10.1002/pssa.201127262

    Article  CAS  Google Scholar 

  25. V. Jayalakshmi, S. Davapriya, R. Murugan, B. Palanivel, Electronic structure and structural phase stability of CuAlX2 (X = S, Se, Te) under pressure. J. Phys. Chem. Solids 67, 669–674 (2006). https://doi.org/10.1016/j.jpcs.2005.08.092

    Article  CAS  Google Scholar 

  26. M. Benabdeslem, H. Sehli, S. Rahal, N. Benslim, L. Bechiri, A. Djekoun, T. Touam, M. Boujnah, A. El Kenz, A. Benyoussef, X. Portier, Ab initio calculations and experimental properties of CuAlxGa1−xTe2 for photovoltaic solar cells. J. Electron. Mater. 45, 1035–1040 (2016). https://doi.org/10.1007/s11664-015-4215-5

    Article  CAS  Google Scholar 

  27. P. Nayebi, K. Mirabbaszadeh, M. Shamshirsaz, Structural and electronic properties of CuInS2 nanowire: a study of density functional theory. Comput. Mater. Sci. 89, 198–204 (2014). https://doi.org/10.1016/j.commatsci.2014.03.060

    Article  CAS  Google Scholar 

  28. Y. Wang, W. Liu, H. Chen, X. Chen, C. Liu, G. Zhuang, R. Wang, F. Shen, H. Wang, H. Xiaoyan, Z. Miao, First principles study on band structure and optical properties of N-doped CuAlO2. Phys. B 545, 167–171 (2018). https://doi.org/10.1016/j.physb.2018.06.007

    Article  CAS  Google Scholar 

  29. J.O. Akinlami, G.A. Adebayo, M.O. Omeike, J.A. Akindiilete, L.O. Abdulfatai, Electronic properties and the phonon band structure of PbTe. Comput. Condens. Matter 15, 90–94 (2018). https://doi.org/10.1016/j.cocom.2017.10.005

    Article  Google Scholar 

  30. S. Sharma, A.S. Verma, R. Bhandari, S. Kumari, V.K. Jindal, Ab initio studies of structural, electronic, optical, elastic and thermal properties of Ag-chalcopyrites (AgAlX2: X = S, Se). Mater. Sci. Semicond. Process. 26, 187–198 (2014). https://doi.org/10.1016/j.mssp.2014.04.036

    Article  CAS  Google Scholar 

  31. X. Hou, K.-L. Choy, Synthesis and characteristics of CuInS2 films for photovoltaic application. Thin Solid Films 480–481, 13–18 (2005). https://doi.org/10.1016/j.tsf.2004.11.014

    Article  CAS  Google Scholar 

  32. T. Yamamoto, K. Fukuzaki, S. Kohiki, Influence of incorporation of Na on p-type CuInS2 thin films. Appl. Surf. Sci. 159–160, 345–349 (2000). https://doi.org/10.1016/S0169-4332(00)00123-9

    Article  Google Scholar 

  33. H. Bouafia, B. Sahli, M.A. Timaoui, B. Djebour, S. Hiadsi, B. Abidri, Structural stability and electronic behaviors of Co1−xOsxSi and macroscopic magnetic susceptibilities of CoSi and OsSi: GGA-PBEsol. GW-approximation and QTAIM investigations. Phys. B 530, 167–176 (2018). https://doi.org/10.1016/j.physb.2017.11.045

    Article  CAS  Google Scholar 

  34. K.M. Wong, M. Irfan, A. Mahmood, G. Murtaza, First principles study of the structural and optoelectronic properties of the A2InSbO6 (A = Ca, Sr, Ba) compounds. Optik 130, 517–524 (2017). https://doi.org/10.1016/j.ijleo.2016.10.139

    Article  CAS  Google Scholar 

  35. L. Pauling, The nature of the chemical bond: an introduction to modern structural chemistry, 3rd edition. Cornell University Press, New York (1960). https://www.amazon.co.uk/NatureChemical-Bond-Introduction-Non-Resident/dp/0801403332

  36. M. Boujnah, O. Dakir, H. Zaari, A. Benyoussef, A. El Kenz, Optoelectronic response of spinels CdX2O4 with X = (Al, Ga, In) through the modified Becke-Johnson functional. J. Appl. Phys. 116(123703), 1–7 (2014). https://doi.org/10.1063/1.4896110

    Article  CAS  Google Scholar 

  37. X. Bin, X. Li, Z. Qin, C. Long, D. Yang, J. Sun, L. Yi, Electronic and optical properties of CuGaS2: first-principles calculations. Phys. B 406, 946–951 (2011). https://doi.org/10.1016/j.physb.2010.12.034

    Article  CAS  Google Scholar 

  38. H. Bennacer, A. Boukortt, S. Meskine, M. Hadjab, M.I. Ziane, A. Zaoui, First principles investigation of optoelectronic properties of ZnXP2 (X = Si, Ge) lattice matched with silicon for tandem solar cells applications using the mBJ exchange potential. Optik 159, 229–244 (2018). https://doi.org/10.1016/j.ijleo.2018.01.079

    Article  CAS  Google Scholar 

  39. N.M. Ravindra, P. Ganapathy, J. Choi, Energy gap-refractive index relations in semiconductors: an overview. Infrared Phys. Technol. 50, 21–29 (2007). https://doi.org/10.1016/j.infrared.2006.04.001

    Article  CAS  Google Scholar 

  40. M. Hadjab, S. Berrah, H. Abid, M.I. Ziane, H. Bennacer, B.G. Yalcin, Full-potential calculations of structural and optoelectronic properties of cubic indium gallium arsenide semiconductor alloys. Optik 127, 9280–9294 (2016). https://doi.org/10.1016/j.ijleo.2016.07.018

    Article  CAS  Google Scholar 

  41. A.A. Lavrentyev, B.V. Gabrelian, V.T. Vu, N.M. Denysyuk, P.N. Shkumat, A.Y. Tarasova, L.I. Isaenko, O.Y. Khyzhun, Electronic structure and optical properties of RbPb2Br5. J. Phys. Chem. Solids 91, 25–33 (2016). https://doi.org/10.1016/j.jpcs.2015.12.003

    Article  CAS  Google Scholar 

  42. A. Ghosh, R. Thangavel, M. Rajagopalan, Electronic and optical modeling of solar cell compound CuXY2 (X = In, Ga, Al; Y = S, Se, Te): first-principles study via Tran-Blaha-modified BeckeJohnson exchange potential approach. J. Mater. Sci. 50, 1710–1717 (2015). https://doi.org/10.1007/s10853-014-8732-z

    Article  CAS  Google Scholar 

  43. B. Amin, R. Khenata, A. Bouhemadou, I. Ahmad, M. Maqbool, Opto-electronic response of spinels MgAl2O4 and MgGa2O4 through modified Becke–Johnson exchange potential. Phys. B 407, 2588–2592 (2012). https://doi.org/10.1016/j.physb.2012.03.075

    Article  CAS  Google Scholar 

  44. M. Hadjab, S. Berrah, H. Abid, M.I. Ziane, H. Bennacer, A.H. Reshak, First-principles investigation of the optical properties for rocksalt mixed metal oxide MgxZn1−xO. Mater. Chem. Phys. 182, 182–189 (2016). https://doi.org/10.1016/j.matchemphys.2016.07.021

    Article  CAS  Google Scholar 

  45. F. Yakuphanoglu, A. Cukurovali, I. Yilmaz, Refractive index and optical absorption properties of the complexes of a cyclobutane containing thiazolylhydrazone ligand. Opt. Mater. 27, 1363–1368 (2005). https://doi.org/10.1016/j.optmat.2004.09.021

    Article  CAS  Google Scholar 

  46. A. Rajeswari, G. Vinitha, P. Murugakoothan, Investigation on optical, thermal, mechanical, dielectric and ferroelectric properties of non linear optical single crystal guanidinium manganese sulphate. J. Mater. Sci. 29(15), 12526–12535 (2018). https://doi.org/10.1007/s10854-018-9352-1

    Article  CAS  Google Scholar 

  47. A.I. Arbab, On the optical conductivity. Optik 194, 163067 (2019). https://doi.org/10.1016/j.ijleo.2019.163067

    Article  CAS  Google Scholar 

  48. J.I. Pankove, Optical Processes in Semiconductors (Dover, New York, 1975)

    Google Scholar 

  49. V.L. Shaposhnikov, A.V. Krivosheeva, V.E. Borisenko, J.-L. Lazzari, F. Arnaud d’Avitaya, Ab initio modeling of the structural, electronic, and optical properties of AIIBIVC V2 semiconductors. Phys. Rev. B 85, 205201 (2012). https://doi.org/10.1103/PhysRevB.85.205201

    Article  CAS  Google Scholar 

  50. A.D. Martinez, B.R. Ortiz, N.E. Johnson, L.L. Baranowski, L. Krishna, S. Choi, P.C. Dippo, B. To, A.G. Norman, P. Stradins, V. Stevanović, E.S. Toberer, A.C. Tamboli, Development of ZnSiP2 for Si-based tandem solar cells. IEEE J. Photovolt. 5(1), 17–21 (2014). https://doi.org/10.1109/jphotov.2014.2362305

    Article  Google Scholar 

  51. M.B. Rabeh, M. Kanzari, Optical constants of Zn-doped CuInS2 thin films. Thin Solid Films 519(21), 7288–7291 (2011). https://doi.org/10.1016/j.tsf.2011.01.139

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Prof. Bouchaib HARTITI, Senior Associate at ICTP (The Abdus Salam International Center for Theoretical Physics), is very grateful to ICTP for financial support. We thank P. Blaha and K. Schwarz for the Wien2k code.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Kotbi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kotbi, A., Hartiti, B., Fadili, S. et al. Experimental and theoretical studies of CuInS2 thin films for photovoltaic applications. J Mater Sci: Mater Electron 30, 21096–21105 (2019). https://doi.org/10.1007/s10854-019-02479-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02479-3

Navigation