Skip to main content
Log in

Ab Initio Calculations and Experimental Properties of CuAl x Ga1−x Te2 for Photovoltaic Solar Cells

  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Nanostructured chalcopyrite CuAl x Ga1−x Te2 (x = 0.25, 0.50, and 0.75) has been prepared by ball milling of Cu, Al, Ga, and Te precursors. Preliminary ab initio calculations of the main properties have been performed on the prototype chalcopyrite semiconductor CuAlGaTe2. The simulation method used is based on the density functional theory within the framework of pseudo-potentials and plane waves. Band Structure calculations suggest that CuAlGaTe2 is a direct bandgap semiconductor having a band gap = 1.35 eV. In the experimental part, x-ray diffraction analysis revealed the presence of (112), (220)/(204), (312)/(116), and (400) reflections for all the milled powders characteristic of the chalcopyrite structure. A shift in peaks towards a higher value of 2θ is observed with the increase in Al composition. With increasing Al content, it is found that the average crystallite size decreases whereas the bandgap energy increases from 1.34 eV to 1.51 eV. Compared with experimental data, calculated results by GGA–mBJ functional quantitatively agree with experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ramanathan, G. Teeter, J.C. Keane, and R. Noufi, Thin Solid Films 480, 499 (2005).

    Article  Google Scholar 

  2. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann, and M. Powalla, Prog. Photovolt. 19, 894 (2011).

    Article  Google Scholar 

  3. I.V. Bodnar, I.A. Victorov, and V.M. Dabranski, J. Cryst. Growth 265, 214 (2004).

    Article  Google Scholar 

  4. M. Benabdeslem, N. Benslim, L. Bechiri, H. Ayed, A. Djekoun, M. Boujnah, X. Portier, S. Ammar, H. Lecoq, S. Novack, and P. Decorse, JOM J. Miner. Met. Mater. S. 66, 985 (2014).

    Article  Google Scholar 

  5. H.H. Sheu, M.E. Liu, and Y.L. Tsai, Powder Technol. 269, 345 (2015).

    Article  Google Scholar 

  6. N. Benslim, S. Mehdaoui, O. Aissaoui, M. Benabdeslem, A. Bouasla, L. Bechiri, A. Otmani, and X. Portier, J. Alloys Compd. 489, 437 (2010).

    Article  Google Scholar 

  7. S. Wu, Y. Xue, and Z. Zhang, J. Alloys Compd. 491, 456 (2010).

    Article  Google Scholar 

  8. R.A. Wibowo, W.H. Jung, and K.H. Kim, J. Phys. Chem. Solids 71, 1702 (2010).

    Article  Google Scholar 

  9. W. Kohn and L.J. Sham, Phys. Rev. 140, A1133 (1965).

    Article  Google Scholar 

  10. P. Blaha, K. Schwarz, G.K.H. Madsen, D. Kvasnicka, J. Luitz. Revised edition WIEN2k.08.3 (Vienna University of Technology, Austria, 2008), pp. 1–205

  11. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  12. F. Tran and P. Blaha, Phys. Rev. Lett. 102, 226401 (2009).

    Article  Google Scholar 

  13. A.D. Becke and E.R. Johnson, J. Chem. Phys. 124, 221101 (2006).

    Article  Google Scholar 

  14. A.D. Becke and M.R. Roussel, Phys. Rev. A 39, 3761 (1989).

    Article  Google Scholar 

  15. P. Guha, S.N. Kundu, S. Chaudhuri, and A.K. Pal, Mater. Chem. Phys. 74, 192 (2002).

    Article  Google Scholar 

  16. R.D. Shannon, Acta Crystallogr. A 32, 751 (1976).

    Article  Google Scholar 

  17. J.J. Shewchun, J.J. Loferski, R. Beaulieu, G.H. Chapman, and B.K. Garside, J. Appl. Phys. 50, 6978 (1979).

    Article  Google Scholar 

  18. J. López-García and C. Guillén, Thin Solid Films 517, 2240 (2009).

    Article  Google Scholar 

  19. A. Shaukat, J. Phys. Chem. Solids 51, 1413 (1990).

    Article  Google Scholar 

  20. P.D. Paulson, M.W. Haimbodi, S. Marsillac, R.W. Birkmire, and W.N. Shafarman, J. Appl. Phys. 91, 10153 (2002).

    Article  Google Scholar 

  21. M.J. Thwaites, R.D. Tomlinson, and M.J. Hampshire, Inst. Phys. Conf. Ser. 35, 237 (1977).

    Google Scholar 

  22. P. Guha, S. Roy, S. Chaudhuri, and A.K. Pal, J. Phys. D 35, 1504 (2002).

    Article  Google Scholar 

  23. B.V. Korzun, A.A. Fadzeyeva, A.V. Mudryi, and S. Schorr, Phys. Status Solidi C 3, 2626 (2006).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Benabdeslem.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Benabdeslem, M., Sehli, H., Rahal, S. et al. Ab Initio Calculations and Experimental Properties of CuAl x Ga1−x Te2 for Photovoltaic Solar Cells. J. Electron. Mater. 45, 1035–1040 (2016). https://doi.org/10.1007/s11664-015-4215-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-015-4215-5

Keywords

Navigation