Skip to main content
Log in

Phase-change characteristics of carbon-doped GeSbSe thin films for PRAM applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Phase-change random access memory (PRAM) is a promising way to overcome problems associated with dynamic random access memory and flash memory, namely, scaling them down to meet increasing performance and reliability demands. Herein, we evaluate carbon-doped Ge10Sb90Se8 (GSS-C) as a potential chalcogenide material for PRAM. The carbon-doping effects on the physical and electrical properties of GSS film were investigated at carbon concentrations from 0 to 11 at.%. The crystal structures were analyzed via X-ray diffraction, which demonstrated that the undoped GSS films had multiple phases; however, incorporating carbon led to a single phase with a rhombohedral crystal structure (Sb phase). The grain size and change in thickness upon phase transition both decreased with increasing carbon concentration, whereas the crystallization temperature and sheet resistance of the amorphous and crystalline states increased. X-ray photoelectron spectroscopy revealed that adding carbon leads to the formation of C–Ge and C–Sb bonds. Moreover, as the carbon concentration increased, the on/off ratio and optical band gap increased. These results imply that GSS-C possesses advantageous thermal stability, reliability, and electrical properties, which strongly suggest that GSS-C would be a promising candidate for phase-change memory applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. J.I. Lee, S.L. Cho, D.H. Ahn, M.S. Kang, S.W. Nam, H.K. Kang, C.H. Chung, IEEE Electron Device Lett. 32, 1113 (2011)

    Article  CAS  Google Scholar 

  2. R.E. Simpson, M. Krbal, P. Fons, A.V. Kolobov, J. Tominaga, T. Uruga, H. Tanida, Nano Lett. 10, 414 (2010)

    Article  CAS  Google Scholar 

  3. M. Terao, T. Morikawa, T. Ohta, Jpn. J. Appl. Phys. 48, 080001 (2009)

    Article  Google Scholar 

  4. S.-W. Nam, H.-S. Chung, Y.C. Lo, L. Qi, J. Li, Y. Lu, A.T.C. Johnson, Y. Jung, P. Nukala, R. Agarwal, Science 336, 1561 (2012)

    Article  CAS  Google Scholar 

  5. S.J. Ahn, Y.N. Hwang, Y.J. Song, S.H. Lee, S.Y. Lee, J.H. Park, C.W. Jeong, K.C. Ryoo, J.M. Shin, J.H. Park, Y. Fai, J.H. Oh, G.H. Koh, G.T. Jeong, S.H. Joo, S.H. Choi, Y.H. Son, J.C. Shin, Y.T. Kim, H.S. Jeong, K. Kim, in Symposium on Digest of Technical Paper. VLSI Technology (2005), p. 98

  6. S.L. Cho, J.H. Yi, Y.H. Ha, B.J. Kuh, C.M. Lee, J.H. Park, S.D. Nam, H. Horii, B.O. Cho, K.C. Ryoo, S.O. Park, H.S. Kim, U.I. Chung, J.T. Moon, in Symposium on Digest of Technical Paper. B.I. VLSI Technology (2005), p. 96

  7. D. Loke, T.H. Lee, W.J. Wang, L.P. Shi, R. Zhao, Y.C. Yeo, T.C. Chong, S.R. Elliott, Science 336, 1566 (2012)

    Article  CAS  Google Scholar 

  8. S. Song, D. Yao, Z. Song, L. Gao, Z. Zhang, L. Li, L. Shen, L. Wu, B. Liu, Y. Cheng, S. Feng, Nanoscale Res. Lett. 10, 89 (2015)

    Article  Google Scholar 

  9. R. Huang, G.P. Kissling, A. Jollyes, P.N. Bartlett, A.L. Hector, W. Levason, G. Reid, C.H.K. De Groot, Nanoscale Res. Lett. 10, 432 (2015)

    Article  Google Scholar 

  10. A.L. Lacaita, A. Redaelli, Microelectron. Eng. 109, 351 (2013)

    Article  CAS  Google Scholar 

  11. J.D. Maimon, K.K. Hunt, L. Burcin, J. Rodgers, IEEE Trans. Nucl. Sci. 50, 1878 (2003)

    Article  CAS  Google Scholar 

  12. A. Padilla, G.W. Burr, K. Virwani, A. Debunne, C.T. Rettner, T. Topuria, P.M. Rice, B. Jackson, D. Dupouy, A.J. Kellock, R.M. Shelby, K. Gopalakrishnan, R.S. Shenoy, B.N. Kurdi, in IEDM 2010, IEEE 2010, pp. 29.4.1–29.4.4

  13. N. Yamada, E. Ohno, N. Akahira, K.I. Nishiuchi, K.I. Nagata, M. Takao, Jpn. J. Appl. Phys. 26, 61 (1987)

    Article  Google Scholar 

  14. M. Aoukar, P.D. Szkutnik, D. Jourde, B. Pelissier, P. Michallon, P. Noe, C. Vallee, J. Phys. D 48, 265203 (2015)

    Article  Google Scholar 

  15. H. Zou, X. Zhu, Y. Hu, Y. Sui, J. Zhang, Z. Song, J. Mater. Sci.: Mater. Electron. 28, 17719 (2017)

    CAS  Google Scholar 

  16. Y.M. Lee, S.Y. Lee, T. Sasaki, K. Kim, D. Ahn, M.-C. Jung, Sci. Rep. 6, 38663 (2016)

    Article  CAS  Google Scholar 

  17. Y. Gu, Z. Song, T. Zhang, B. Liu, S. Feng, Solid-State Electron. 54, 443 (2010)

    Article  CAS  Google Scholar 

  18. J.H. Kim, J.H. Park, D.-H. Ko, Thin Solid Films 653, 173 (2018)

    Article  CAS  Google Scholar 

  19. J.H. Kim, D.-S. Byeon, J.H. Park, D.-H. Ko, J. Mater. Res. 32, 2449 (2017)

    Article  CAS  Google Scholar 

  20. H.S. Kim, Y.T. Kim, H.S. Hwang, M.Y. Sung, Phys. Status Solidi RRL 8(3), 243 (2014)

    Article  CAS  Google Scholar 

  21. K.B. Borisenko, Y.X. Chen, S.A. Song, D.J.H. Cockayne, Chem. Mater. 21, 5244 (2009)

    Article  CAS  Google Scholar 

  22. S. Privitera, E. Rimini, R. Zonca, Appl. Phys. Lett. 85, 3044 (2004)

    Article  CAS  Google Scholar 

  23. X. Zhou, L. Wu, Z. Song, F. Rao, M. Zhu, C. Peng, D. Yao, S. Song, B. Liu, S. Feng, Appl. Phys. Lett. 101, 142104 (2012)

    Article  Google Scholar 

  24. J.H. Park, S.-W. Kim, J.H. Kim, Z. Wu, S.L. Cho, D. Ahn, D.H. Ahn, J.M. Lee, S.U. Nam, D.-H. Ko, J. Appl. Phys. 117, 115703 (2015)

    Article  Google Scholar 

  25. H.S. Kim, Y.T. Kim, H.S. Hwang, M.Y. Sung, Phys. Status Solidi Rapid Res. Lett. 8, 243 (2014)

    Article  CAS  Google Scholar 

  26. G.B. Beneventi, L. Perniola, V. Sousa, E. Gourvest, S. Maitrejean, J.C. Bastien, A. Bastard, B. Hyot, A. Fargeix, C. Jahan, J.F. Nodin, A. Persico, A. Fantini, D. Blachier, A. Toffoli, S. Loubriat, A. Roule, S. Lhostis, H. Feldis, G. Reimbold, T. Billon, B. De Salvo, L. Larcher, P. Pavan, D. Bensahel, P. Mazoyer, R. Annunziata, P. Zuliani, F. Boulanger, Solid State Electron. 65, 197–204 (2011)

    Article  Google Scholar 

  27. E. Cho, Y. Youn, S. Han, Appl. Phys. Lett. 99, 183501 (2011)

    Article  Google Scholar 

  28. H. Horii, J.H. Yi, J.H. Park, Y.H. Ha, I.G. Baek, S.O. Park, Y.N. Hwang, S.H. Lee, Y.T. Kim, K.H. Lee, U.I. Chung, J.T. Moon, in Symposium on Digest of Technical Paper. VLSI Technology 2003, p. 177

  29. T. Siegrist, P. Jost, H. Volker, M. Woda, P. Merkelbach, C. Schlockermann, M. Wuttig, Nature Mater. 10, 202 (2011)

    Article  CAS  Google Scholar 

  30. M.J. Kang, S.Y. Choi, D. Wamwangi, K. Wang, C. Steimer, M. Wuttig, J. Appl. Phys. 98, 14904 (2005)

    Article  Google Scholar 

  31. W. Zhou, L. Wu, X. Zhou, F. Rao, Z. Song, D. Yao, W. Yin, S. Song, B. Liu, B. Qian, S. Feng, Appl. Phys. Lett. 105, 243113 (2014)

    Article  Google Scholar 

  32. J. Vilcarromero, F.C. Marques, Appl. Phys. A 70, 581 (2000)

    Article  CAS  Google Scholar 

  33. B. Liu, Z.-T. Song, T. Zhang, S.-L. Feng, B. Chen, Chin. Phys. 13, 1947 (2004)

    Article  CAS  Google Scholar 

  34. C.D. Wagner, G.E. Muilenberg, Handbook of X-Ray Photoelectron Spectroscopy: A Reference Book of Standard Data for Use in X-Ray Photoelectron Spectroscopy (Physical Electronics Division), 1st edn. (Perkin-Elmer Corp, Eden Prairie, 1979)

    Google Scholar 

  35. T. Ueno, A. Odajima, Jpn. J. Appl. Phys. 19, L519 (1980)

    Article  CAS  Google Scholar 

  36. J. Wang, Z. Deng, Y. Li, Mater. Res. Bull. 37, 495 (2002)

    Article  CAS  Google Scholar 

  37. B.S. Lee, J.R. Abelson, S.G. Bishop, D.H. Kang, B.K. Cheong, K.B. Kim, J. Appl. Phys. 97, 093509 (2005)

    Article  Google Scholar 

  38. Y. Zhang, J. Feng, B. Cai, Proc. SPIE 7125, 71251T–71251T-8 (2008)

    Article  Google Scholar 

  39. W.K. Njoroge, H.W. Wöltgens, M. Wuttig, J. Vac. Sci. Technol. A 20, 230 (2002)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D.-H. Ko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10854_2019_2442_MOESM1_ESM.tiff

Supplementary material 1 TEM-EDS analysis of GSS films doped with different carbon concentrations after annealing at 400°C for 1 h: (a) 0 at.% (undoped GSS), (b) 6 at.%, (c) 8.5 at.%, and (d) 11 at.% (TIFF 2227 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J.H., Park, J.H. & Ko, DH. Phase-change characteristics of carbon-doped GeSbSe thin films for PRAM applications. J Mater Sci: Mater Electron 30, 20751–20757 (2019). https://doi.org/10.1007/s10854-019-02442-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02442-2

Navigation