Skip to main content
Log in

An agar sandwich method for patterning transparent conducting oxides

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Transparent electrodes are frequently used to drive opto-electronic devices, and the patterning of these electrodes is essential. The present work demonstrates a facile means of removing transparent conducting oxides (TCOs) from a glass substrate in selected areas. When agarose gel (agar), a material typically used in desserts, is sandwiched between two TCO-coated glass substrates and connected to a dry cell, the TCO is removed from the glass at the agar stamping area within 2 min. This method allows etching of TCOs using acid-free, inexpensive, and readily available starting materials. Analyses by optical microscopy, transmission spectroscopy, electrical resistance measurements, X-ray diffraction, and X-ray photoelectron spectroscopy demonstrate that this etching occurs as a result of reduction of the TCO in conjunction with the electrolysis of water at the interface between the TCO and agar surfaces. Using this technique, high-throughput patterning of TCOs with an edge resolution of several micrometres was achieved. Furthermore, the shape of the agar template can be readily changed simply by cutting the agar using scissors. Therefore, this method provides a useful means for both researchers and students to easily fabricate patterned substrates for use in electronics and related technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. K.L. Chopra, S. Major, D.K. Pandya, Thin Solid Films 102, 1 (1983)

    CAS  Google Scholar 

  2. H. Hosono, K. Ueda, In Springer Handbook of Electronic and Photonic Materials, ed. By S. Kasap, P. Capper (Springer, Berlin, 2006) p. 1391

  3. R.M. Pasquarelli, D.S. Ginley, R. O’Hayre, Chem. Soc. Rev. 40, 5406 (2011)

    CAS  Google Scholar 

  4. I. Hamberg, C.G. Granqvist, J. Appl. Phys. 60, R123 (1986)

    CAS  Google Scholar 

  5. K. Ide, K. Nomura, H. Hosono, T. Kamiya, Phys. Status Solidi A 216, 1800372 (2019)

    Google Scholar 

  6. K.V. Khot, T.D. Dongale, S.S. Mali, C.K. Hong, R.K. Kamat, P.N. Bhosale, J. Mater. Sci. 52, 9709 (2017)

    CAS  Google Scholar 

  7. K.V. Khot, S.S. Mali, R.M. Mane, P.S. Patil, C.K. Hong, J.H. Kim, J. Heo, P.N. Bhosale, J. Mater. Sci. 26, 6897 (2015)

    CAS  Google Scholar 

  8. C.C. Boyd, R. Cheacharoen, T. Leijtens, M.D. McGehee, Chem. Rev. 119, 3418 (2019)

    CAS  Google Scholar 

  9. T.L. Breen, P.M. Fryer, R.W. Nunes, M.E. Rothwell, Langmuir 18, 194 (2002)

    CAS  Google Scholar 

  10. N. Yamamoto, H. Makinoa, S. Osone, A. Ujihara, T. Ito, H. Hokari, T. Maruyama, T. Yamamoto, Thin Solid Films 520, 4131 (2012)

    CAS  Google Scholar 

  11. M. Scholten, J.E.A.M. van den Meerakker, J. Electrochem. Soc. 140, 471 (1993)

    CAS  Google Scholar 

  12. M. Takabatake, Y. Wakui, N. Konishi, J. Electrochem. Soc. 142, 2470 (1995)

    CAS  Google Scholar 

  13. M.M. Salunkhe, K.V. Khot, P.S. Patil, T.M. Bhave, P.N. Bhosale, New J. Chem. 39, 3405 (2015)

    CAS  Google Scholar 

  14. K.V. Khot, S.S. Mali, V.B. Ghanwat, S.D. Kharade, R.M. Mane, C.K. Hong, P.N. Bhosale, New J. Chem. 40, 3277 (2016)

    CAS  Google Scholar 

  15. C.J. Traverse, R. Pandey, M.C. Barr, R.R. Lunt, Nat. Energy 2, 849 (2017)

    Google Scholar 

  16. Z. Wang, C. Chen, K. Wu, H. Chong, H. Ye, Phys. Status Solidi A 216, 1700794 (2019)

    Google Scholar 

  17. H.D. Belitz, W. Grosch, P. Schieberle, Food Chemistry, 4th edn. (Springer, Berlin, 2009), pp. 302–303

    Google Scholar 

  18. G.A. Burdock, Encyclopedia of food and color additives (CRC Press, Boca Raton, 1997), p. 53

    Google Scholar 

  19. S.B. Smith, P.K. Aldridge, J.B. Callis, Science 243, 203 (1989)

    CAS  Google Scholar 

  20. F. Carle, M. Frank, M.V. Olson, Science 232, 65 (1986)

    CAS  Google Scholar 

  21. B. Alberts, A. Johnson, J. Lewis, M. Raff, K. Roberts, P. Walter, Molecular biology of the cell, 5th edn. (Garland Science, New York, 2008), p. 534

    Google Scholar 

  22. D. Voet, J.G. Voet, Biochemistry (Wiley, Hoboken, 2011), p. 147

    Google Scholar 

  23. C.J. Campbell, R. Klajn, M. Fialkowski, B.A. Grzybowski, Langmuir 21, 418 (2005)

    CAS  Google Scholar 

  24. B.A. Grzybowski, K.J.M. Bishop, C.J. Campbell, M. Fialkowski, S.K. Smoukov, Soft Matter 1, 114 (2005)

    CAS  Google Scholar 

  25. S.K. Smoukov, K.J.M. Bishop, R. Klajn, C.J. Campbell, B.A. Grzybowski, Adv. Mater. 17, 1361 (2005)

    CAS  Google Scholar 

  26. S.K. Smoukov, B.A. Grzybowski, Chem. Mater. 18, 4722 (2006)

    CAS  Google Scholar 

  27. B.A. Grzybowski, K.J.M. Bishop, Small 5, 22 (2009)

    CAS  Google Scholar 

  28. T.S. Hansen, K. West, O. Hassager, N.B. Larsen, Adv. Mater. 19, 3261 (2007)

    CAS  Google Scholar 

  29. M. Mayer, J. Yang, I. Gitlin, D.H. Gracias, G.M. Whitesides, Proteomics 4, 2366 (2004)

    CAS  Google Scholar 

  30. M.J. Jang, Y. Nam, Macromol. Biosci. 15, 613 (2015)

    CAS  Google Scholar 

  31. Y. Xia, Y. Tang, H. Wu, J. Zhang, Z. Li, F. Pan, S. Wang, X. Wang, H. Xu, J.R. Lu, A.C.S. Appl, Mater. Interfaces 9, 1255 (2017)

    CAS  Google Scholar 

  32. J.L. Zhuang, Y. Zhang, X.Y. Liu, C. Wang, H.L. Mao, X. Du, J. Tang, Appl. Surf. Sci. 469, 90 (2019)

    CAS  Google Scholar 

  33. X. Ma, D. Zhao, M. Xue, H. Wang, T. Cao, Angew. Chem. Int. Ed. 49, 5537 (2010)

    CAS  Google Scholar 

  34. L. Zhang, J.L. Zhuang, X.Z. Ma, J. Tang, Z.W. Tian, Electrochem. Commun. 9, 2529 (2007)

    CAS  Google Scholar 

  35. J. Tang, J.L. Zhuang, L. Zhang, W.H. Wang, Z.W. Tian, Electrochim. Acta 53, 5628 (2008)

    CAS  Google Scholar 

  36. L.H. Jin, B.Y. Yang, L. Zhang, P.L. Lin, C. Cui, J. Tang, Langmuir 25, 5380 (2009)

    CAS  Google Scholar 

  37. S. Sekine, S. Nakanishi, T. Miyake, K. Nagamine, H. Kaji, M. Nishizawa, Langmuir 26, 11526 (2010)

    CAS  Google Scholar 

  38. C.G. Granqvist, A. Hultåker, Thin Solid Films 411, 1 (2002)

    CAS  Google Scholar 

  39. M. Grell, D.D.C. Bradley, Adv. Mater. 11, 895 (1999)

    CAS  Google Scholar 

  40. K.H. Weinfurtner, H. Fujikawa, S. Tokito, Y. Taga, Appl. Phys. Lett. 76, 2502 (2000)

    CAS  Google Scholar 

  41. D. Neher, Macromol. Rapid Commun. 22, 1365 (2001)

    CAS  Google Scholar 

  42. M. Imanishi, D. Kajiya, T. Koganezawa, K. Saitow, Sci. Rep. 7, 5141 (2017)

    Google Scholar 

  43. CRC Handbook of Chemistry and Physics, 95th edn. W.M. Haynes Ed. (CRC Press, Boca Raton, FL, 2014), pp. 14–19

  44. C.H. Liang, G.W. Meng, Y. Lei, F. Phillipp, L.D. Zhang, Adv. Mater. 13, 1330 (2001)

    CAS  Google Scholar 

  45. K. Soulantica, L. Erades, M. Sauvan, F. Senocq, A. Maisonnat, B. Chaudret, Adv. Funct. Mater. 13, 553 (2003)

    CAS  Google Scholar 

  46. M. Gross, N. Linse, I. Maksimenko, P.J. Wellmann, Adv. Eng. Mater. 11, 295 (2009)

    CAS  Google Scholar 

  47. NIST X-ray Photoelectron Spectroscopy Database, ver. 4.1. (NIST, 2012) http://dx.doi.org/10.18434/T4T88K. Accessed 2 Sept 2019

  48. C. Donley, D. Dunphy, D. Paine, C. Carter, K. Nebesny, P. Lee, D. Alloway, N.R. Armstrong, Langmuir 18, 450 (2002)

    CAS  Google Scholar 

  49. M. Carmo, D.L. Fritz, J. Mergel, D. Stolten, Int. J. Hydrog. Energy 38, 4901 (2013)

    CAS  Google Scholar 

  50. T.A. Davis, S.L. Athey, M.L. Vandevender, C.L. Crihfield, C.C.E. Kolanko, S. Shao, M.C.G. Ellington, J.K. Dicks, J.S. Carver, L.A. Holland, J. Chem. Educ. 92, 116 (2015)

    CAS  Google Scholar 

  51. C.E. Housecroft, A.G. Sharpe, Inorganic Chemistry, 4th edn. (England, Pearson Education Limited, 2012), pp. 445–473

    Google Scholar 

  52. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)

    CAS  Google Scholar 

  53. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338, 643 (2012)

    CAS  Google Scholar 

  54. A.K. Jena, A. Kulkarni, T. Miyasaka, Chem. Rev. 119, 3036 (2019)

    CAS  Google Scholar 

  55. S. Ray, R. Banerjee, N. Basu, A.K. Batabyal, A.K. Barua, J. Appl. Phys. 54, 3497 (1983)

    CAS  Google Scholar 

  56. M. Katayama, Thin Solid Films 341, 140 (1999)

    CAS  Google Scholar 

  57. Y. Xin, K. Nishio, K. Saitow, Appl. Phys. Lett. 106, 201102 (2015)

    Google Scholar 

  58. A. Paracchino, V. Laporte, K. Sivula, M. Grätzel, E. Thimsen, Nat. Mater. 10, 456 (2011)

    CAS  Google Scholar 

  59. K.H. Kim, K.C. Park, D.Y. Ma, J. Appl. Phys. 81, 7764 (1997)

    CAS  Google Scholar 

  60. X. Jiang, F.L. Wong, M.K. Fung, S.T. Lee, Appl. Phys. Lett. 83, 1875 (2003)

    CAS  Google Scholar 

  61. H. Kim, J.S. Horwitz, W.H. Kim, A.J. Mäkinen, Z.H. Kafafi, D.B. Chrisey, Thin Solid Films 420, 539 (2002)

    Google Scholar 

Download references

Acknowledgements

This work was supported by JSPS KAKENHI Grants-in-Aid for Young Scientists (B) (Grant Numbers 26790015 and 17K14082). The author acknowledges Dr. Dote of Hiroshima University for help with XPS measurements and is grateful to Ms. Isagai of the Foundation for Promotion of Material Science and Technology of Japan for conducting XRD measurements. The author is also grateful to Ms. Tanaka of the Hiroshima City Industrial Promotion Centre for the stylus-type roughness instrument. The author also wishes to acknowledge Mr. Nawachi and Mr. Ito of the Hiroshima Prefectural Technology Research Institute for the sheet resistance metre. Transmission spectra and FE-SEM images were measured using shared equipment in the Cryogenics and Instrumental Analysis Division of N-BARD, Hiroshima University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daisuke Kajiya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kajiya, D. An agar sandwich method for patterning transparent conducting oxides. J Mater Sci: Mater Electron 30, 20734–20740 (2019). https://doi.org/10.1007/s10854-019-02440-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02440-4

Navigation