Skip to main content
Log in

Effects of organotin halide perovskite and Pt nanoparticles in SnO2-based sensing materials on the detection of formaldehyde

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

HC(NH2)2SnI3 (FASnI3) organotin halide perovskite was firstly synthesized by a solution method and then decorated with Pt nanoparticles by immersion method. HC(NH2)2SnI3/SnO2/Pt was obtained by calcining the sample to oxidize part of the HC(NH2)2SnI3 into SnO2 at different temperature in air. The structural, morphological characteristics and formaldehyde sensing performance were studied at length. The results indicated that HC(NH2)2SnI3/SnO2/Pt obtained at 240 °C showed superior sensing properties, of which the response to 10 ppm formaldehyde at 80 °C was 47.5 and the response and recovery time was 40 s and 37 s, respectively. The corresponding detection limit was estimated as low as 65 ppb. The high performance of the sample could be ascribed to the reason that the introduction of moderate HC(NH2)2SnI3 into SnO2 could lead to the formation of n-n heterojunction, and the organic–inorganic hybrid perovskites with narrow bandgap could generate abundant electrons from low-temperature excitation and the electrons could be transferred through the n-n heterojunction to SnO2. Consequently, the optimum operating temperature for formaldehyde detection could be reduced by 120 °C compared with pure SnO2. Moreover, the Pt nanoparticles improved response value more than twofold generally, which might be attributed to spillover effect and high catalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. W. Ge, Y. Chang, V. Natarajan, Z. Feng, J. Zhan, X. Ma, In2O3-SnO2 hybrid porous nanostructures delivering enhanced formaldehyde sensing performance. J. Alloys Compd. 746, 36–44 (2018). https://doi.org/10.1016/j.jallcom.2018.02.171

    Article  CAS  Google Scholar 

  2. D. Liu, J. Pan, J. Tang, W. Liu, S. Bai, R. Luo, Ag decorated SnO2 nanoparticles to enhance formaldehyde sensing properties. J. Phys. Chem. Solids 124, 36–43 (2019). https://doi.org/10.1016/j.jpcs.2018.08.028

    Article  CAS  Google Scholar 

  3. D. Wang, K. Wan, M. Zhang, H. Li, P. Wang, X. Wang, J. Yang, Constructing hierarchical SnO2 nanofiber/nanosheets for efficient formaldehyde detection. Sens. Actuators B 283, 714–723 (2019). https://doi.org/10.1016/j.snb.2018.11.125

    Article  CAS  Google Scholar 

  4. Z. Bo, M. Yuan, S. Mao, X. Chen, J. Yan, K. Cen, Decoration of vertical graphene with tin dioxide nanoparticles for highly sensitive room temperature formaldehyde sensing. Sens. Actuators B 256, 1011–1020 (2018). https://doi.org/10.1016/j.snb.2017.10.043

    Article  CAS  Google Scholar 

  5. F. Han, F. Li, S. Liu, L. Niu, Sub-stoichiometric WO2.9 as co-catalyst with platinum for formaldehyde gas sensor with high sensitivity. Sens. Actuators B 263, 369–376 (2018). https://doi.org/10.1016/j.snb.2018.02.103

    Article  CAS  Google Scholar 

  6. H.J. Park, S.Y. Hong, D.H. Chun, S.W. Kang, J.C. Park, D.-S. Lee, A highly susceptive mesoporous hematite microcube architecture for sustainable P-type formaldehyde gas sensors. Sens. Actuators B 287, 437–444 (2019). https://doi.org/10.1016/j.snb.2019.01.153

    Article  CAS  Google Scholar 

  7. S. Wang, J. Cao, W. Cui, L. Fan, X. Li, D. Li, Oxygen vacancies and grain boundaries potential barriers modulation facilitated formaldehyde gas sensing performances for In2O3 hierarchical architectures. Sens. Actuators B 255, 159–165 (2018). https://doi.org/10.1016/j.snb.2017.08.054

    Article  CAS  Google Scholar 

  8. T. Wang, B. Liu, Q. Li, S. Wang, Controllable construction of Cr2O3-ZnO hierarchical heterostructures and their formaldehyde gas sensing properties. Mater. Lett. 221, 260–263 (2018). https://doi.org/10.1016/j.matlet.2018.03.073

    Article  CAS  Google Scholar 

  9. J. Hu, T. Wang, Y. Wang, D. Huang, G. He, Y. Han, N. Hu, Y. Su, Z. Zhou, Y. Zhang, Z. Yang, Enhanced formaldehyde detection based on Ni doping of SnO2 nanoparticles by one-step synthesis. Sens. Actuators B 263, 120–128 (2018). https://doi.org/10.1016/j.snb.2018.02.035

    Article  CAS  Google Scholar 

  10. Y. Li, N. Chen, D. Deng, X. Xing, X. Xiao, Y. Wang, Formaldehyde detection: SnO2 microspheres for formaldehyde gas sensor with high sensitivity, fast response/recovery and good selectivity. Sens. Actuators B 238, 264–273 (2017). https://doi.org/10.1016/j.snb.2016.07.051

    Article  CAS  Google Scholar 

  11. Y. Chen, X. Zhang, Z. Liu, Z. Zeng, H. Zhao, X. Wang, J. Xu, Light enhanced room temperature resistive NO2 sensor based on a gold-loaded organic-inorganic hybrid perovskite incorporating tin dioxide. Mikrochim. Acta 186, 47 (2019). https://doi.org/10.1007/s00604-018-3155-1

    Article  CAS  Google Scholar 

  12. G. Li, Z. Cheng, Q. Xiang, L. Yan, X. Wang, J. Xu, Bimetal PdAu decorated SnO2 nanosheets based gas sensor with temperature-dependent dual selectivity for detecting formaldehyde and acetone. Sens. Actuators B 283, 590–601 (2019). https://doi.org/10.1016/j.snb.2018.09.117

    Article  CAS  Google Scholar 

  13. C. Liu, H. Gao, L. Wang, T. Wang, X. Yang, P. Sun, Y. Gao, X. Liang, F. Liu, H. Song, G. Lu, Facile synthesis and the enhanced sensing properties of Pt-loaded α-Fe2O3 porous nanospheres. Sens. Actuators B 252, 1153–1162 (2017). https://doi.org/10.1016/j.snb.2017.06.012

    Article  CAS  Google Scholar 

  14. X. Gao, F. Li, R. Wang, T. Zhang, A formaldehyde sensor: significant role of p-n heterojunction in gas-sensitive core-shell nanofibers. Sens. Actuators B 258, 1230–1241 (2018). https://doi.org/10.1016/j.snb.2017.11.088

    Article  CAS  Google Scholar 

  15. L. Lei, Z. Chunmei, C. Wei, Fabrication of SnO2-SnO nanocomposites with p-n heterojunctions for the low-temperature sensing of NO2 gas. Nanoscale 7, 12133 (2015)

    Article  Google Scholar 

  16. G. Li, X. Zhang, H. Lu, C. Yan, K. Chen, H. Lu, J. Gao, Z. Yang, G. Zhu, C. Wang, Z. He, Ethanol sensing properties and reduced sensor resistance using porous Nb2O5-TiO2 n-n junction nanofibers. Sens. Actuators B 283, 602–612 (2019). https://doi.org/10.1016/j.snb.2018.12.074

    Article  CAS  Google Scholar 

  17. B. Saparov, D.B. Mitzi, Organic-inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116, 4558–4596 (2016). https://doi.org/10.1021/acs.chemrev.5b00715

    Article  CAS  Google Scholar 

  18. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009)

    Article  CAS  Google Scholar 

  19. M. Li, Z.K. Wang, M.P. Zhuo, Y. Hu, K.H. Hu, Q.Q. Ye, S.M. Jain, Y.G. Yang, X.Y. Gao, L.S. Liao, Pb–Sn–Cu ternary organometallic halide perovskite solar cells. Adv. Mater. 30, e1800258 (2018). https://doi.org/10.1002/adma.201800258

    Article  CAS  Google Scholar 

  20. L. Gildo-Ortiz, V.M. Rodríguez-Betancourtt, O. Blanco-Alonso, A. Guillén-Bonilla, J.T. Guillén-Bonilla, A. Guillén-Cervantes, J. Santoyo-Salazar, H. Guillén-Bonilla, A simple route for the preparation of nanostructured GdCoO3 via the solution method, as well as its characterization and its response to certain gases. Results Phys. 12, 475–483 (2019). https://doi.org/10.1016/j.rinp.2018.11.072

    Article  Google Scholar 

  21. B. Wang, Q. Yu, S. Zhang, T. Wang, P. Sun, X. Chuai, G. Lu, Gas sensing with yolk-shell LaFeO3 microspheres prepared by facile hydrothermal synthesis. Sens. Actuators B 258, 1215–1222 (2018). https://doi.org/10.1016/j.snb.2017.12.018

    Article  CAS  Google Scholar 

  22. P. Zhang, H. Qin, W. Lv, H. Zhang, J. Hu, Gas sensors based on ytterbium ferrites nanocrystalline powders for detecting acetone with low concentrations. Sens. Actuators B 246, 9–19 (2017). https://doi.org/10.1016/j.snb.2017.01.096

    Article  CAS  Google Scholar 

  23. M.-Y. Zhu, L.-X. Zhang, J. Yin, J.-J. Chen, L.-J. Bie, B.D. Fahlman, Physisorption induced p-xylene gas-sensing performance of (C4H9NH3)2PbI4 layered perovskite. Sens. Actuators B 282, 659–664 (2019). https://doi.org/10.1016/j.snb.2018.11.124

    Article  CAS  Google Scholar 

  24. Y. Dang, Y. Zhou, X. Liu, D. Ju, S. Xia, H. Xia, X. Tao, Formation of hybrid perovskite tin iodide single crystals by top-seeded solution growth. Angew. Chem. Int. Ed. Engl. 55, 3447–3450 (2016). https://doi.org/10.1002/anie.201511792

    Article  CAS  Google Scholar 

  25. C. Bernal, K. Yang, First-principles hybrid functional study of the organic-inorganic perovskites CH3NH3SnBr3 and CH3NH3SnI3. J. Phys. Chem. C 118, 24383–24388 (2014). https://doi.org/10.1021/jp509358f

    Article  CAS  Google Scholar 

  26. F. Wang, J. Ma, F. Xie, L. Li, J. Chen, J. Fan, N. Zhao, Organic cation-dependent degradation mechanism of organotin halide perovskites. Adv. Funct. Mater. 26, 3417–3423 (2016). https://doi.org/10.1002/adfm.201505127

    Article  CAS  Google Scholar 

  27. J. Kim, J.S. Yun, X. Wen, A.M. Soufiani, C.F.J. Lau, B. Wilkinson, J. Seidel, M.A. Green, S. Huang, A.W.Y. Ho-Baillie, Nucleation and growth control of HC(NH2)2PbI3 for planar perovskite solar cell. J. Phys. Chem. C 120, 11262–11267 (2016). https://doi.org/10.1021/acs.jpcc.6b02443

    Article  CAS  Google Scholar 

  28. W. Zhang, Y. Chen, X. Wang, X. Yan, J. Xu, Z. Zeng, Formation of n-n type heterojunction-based tin organic-inorganic hybrid perovskite composites and their functions in the photocatalytic field. Phys. Chem. Chem. Phys. 20, 6980–6989 (2018). https://doi.org/10.1039/c7cp07819f

    Article  CAS  Google Scholar 

  29. C.C. Stoumpos, C.D. Malliakas, M.G. Kanatzidis, Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013). https://doi.org/10.1021/ic401215x

    Article  CAS  Google Scholar 

  30. M.R. Gao, Z.Y. Lin, J. Jiang, C.H. Cui, Y.R. Zheng, S.H. Yu, Completely green synthesis of colloid Adams’ catalyst alpha-PtO2 nanocrystals and derivative Pt nanocrystals with high activity and stability for oxygen reduction. Chemistry (Easton) 18, 8423–8429 (2012). https://doi.org/10.1002/chem.201200353

    Article  CAS  Google Scholar 

  31. W. Liao, D. Zhao, Y. Yu, C.R. Grice, C. Wang, A.J. Cimaroli, P. Schulz, W. Meng, K. Zhu, R.G. Xiong, Y. Yan, Lead-free inverted planar formamidinium tin triiodide perovskite solar cells achieving power conversion efficiencies up to 6.22. Adv. Mater. 28, 9333–9340 (2016). https://doi.org/10.1002/adma.201602992

    Article  CAS  Google Scholar 

  32. P. Wang, J. Guan, D.T.K. Galeschuk, Y. Yao, C.F. He, S. Jiang, S. Zhang, Y. Liu, M. Jin, C. Jin, Y. Song, Pressure-induced polymorphic, optical, and electronic transitions of formamidinium lead iodide perovskite. J. Phys. Chem. Lett. 8, 2119–2125 (2017). https://doi.org/10.1021/acs.jpclett.7b00665

    Article  CAS  Google Scholar 

  33. L. Dimesso, A. Quintilla, Y.M. Kim, U. Lemmer, W. Jaegermann, Investigation of formamidinium and guanidinium lead tri-iodide powders as precursors for solar cells. Mater. Sci. Eng. B 204, 27–33 (2016). https://doi.org/10.1016/j.mseb.2015.11.006

    Article  CAS  Google Scholar 

  34. M. Tonezzer, J.-H. Kim, J.-H. Lee, S. Iannotta, S.S. Kim, Predictive gas sensor based on thermal fingerprints from Pt-SnO2 nanowires. Sens. Actuators B 281, 670–678 (2019). https://doi.org/10.1016/j.snb.2018.10.102

    Article  CAS  Google Scholar 

  35. N. Li, Y. Fan, Y. Shi, Q. Xiang, X. Wang, J. Xu, A Low temperature formaldehyde gas sensor based on hierarchical SnO/SnO2 nano-flowers assembled from ultrathin nanosheets: synthesis, sensing performance and mechanism. Sens. Actuators B (2019). https://doi.org/10.1016/j.snb.2019.04.061

    Article  Google Scholar 

  36. N.S. Sabri, M.S.M. Deni, A. Zakaria, M.K. Talari, Effect of Mn doping on structural and optical properties of SnO2 nanoparticles prepared by mechanochemical processing. Phys Procedia 25, 233–239 (2012). https://doi.org/10.1016/j.phpro.2012.03.077

    Article  CAS  Google Scholar 

  37. Y. Wang, Y. Zeng, L. Wang, Z. Lou, L. Qiao, H. Tian, W. Zheng, Ultrathin nanorod-assembled SnO2 hollow cubes for high sensitive n-butanol detection. Sens. Actuators B 283, 693–704 (2019). https://doi.org/10.1016/j.snb.2018.12.016

    Article  CAS  Google Scholar 

  38. D. Meng, D. Liu, G. Wang, Y. Shen, X. San, M. Li, F. Meng, Low-temperature formaldehyde gas sensors based on NiO-SnO2 heterojunction microflowers assembled by thin porous nanosheets. Sens. Actuators B 273, 418–428 (2018). https://doi.org/10.1016/j.snb.2018.06.030

    Article  CAS  Google Scholar 

  39. R. Li, S. Chen, Z. Lou, L. Li, T. Huang, Y. Song, D. Chen, G. Shen, Fabrication of porous SnO2 nanowires gas sensors with enhanced sensitivity. Sens. Actuators B 252, 79–85 (2017). https://doi.org/10.1016/j.snb.2017.05.161

    Article  CAS  Google Scholar 

  40. T. Li, W. Zeng, H. Long, Z. Wang, Nanosheet-assembled hierarchical SnO2 nanostructures for efficient gas-sensing applications. Sens. Actuators B 231, 120–128 (2016). https://doi.org/10.1016/j.snb.2016.03.003

    Article  CAS  Google Scholar 

  41. L. Li, J. Tan, M. Dun, X. Huang, Porous ZnFe2O4 nanorods with net-worked nanostructure for highly sensor response and fast response acetone gas sensor. Sens. Actuators B 248, 85–91 (2017). https://doi.org/10.1016/j.snb.2017.03.119

    Article  CAS  Google Scholar 

  42. D. Wang, M. Zhang, Z. Chen, H. Li, A. Chen, X. Wang, J. Yang, Enhanced formaldehyde sensing properties of hollow SnO2 nanofibers by graphene oxide. Sens. Actuators B 250, 533–542 (2017). https://doi.org/10.1016/j.snb.2017.04.164

    Article  CAS  Google Scholar 

  43. Y. He, H. Li, X. Zou, N. Bai, Y. Cao, Y. Cao, M. Fan, G.-D. Li, Platinum dioxide activated porous SnO2 microspheres for the detection of trace formaldehyde at low operating temperature. Sens. Actuators B 244, 475–481 (2017). https://doi.org/10.1016/j.snb.2017.01.014

    Article  CAS  Google Scholar 

  44. T. Yang, M. Zhu, K. Gu, C. Zhai, Q. Zhao, X. Yang, M. Zhang, Facile synthesis of SnO2 nanoparticles for improved formaldehyde detection. New J. Chem. 42, 13612–13618 (2018). https://doi.org/10.1039/c8nj01923a

    Article  CAS  Google Scholar 

  45. J.-H. Kim, J.-H. Lee, A. Mirzaei, H.W. Kim, S.S. Kim, SnO2 (n)-NiO (p) composite nanowebs: gas sensing properties and sensing mechanisms. Sens. Actuators B 258, 204–214 (2018). https://doi.org/10.1016/j.snb.2017.11.063

    Article  CAS  Google Scholar 

  46. S.K. Lim, S.-H. Hwang, D. Chang, S. Kim, Preparation of mesoporous In2O3 nanofibers by electrospinning and their application as a CO gas sensor. Sens. Actuators B 149, 28–33 (2010). https://doi.org/10.1016/j.snb.2010.06.039

    Article  CAS  Google Scholar 

  47. Z. Ye, H. Tai, T. Xie, Z. Yuan, C. Liu, Y. Jiang, Room temperature formaldehyde sensor with enhanced performance based on reduced graphene oxide/titanium dioxide. Sens. Actuators B 223, 149–156 (2016). https://doi.org/10.1016/j.snb.2015.09.102

    Article  CAS  Google Scholar 

  48. J.-H. Kim, J.-H. Lee, A. Mirzaei, H.W. Kim, S.S. Kim, Optimization and gas sensing mechanism of n-SnO2-p-Co3O4 composite nanofibers. Sens. Actuators B 248, 500–511 (2017). https://doi.org/10.1016/j.snb.2017.04.029

    Article  CAS  Google Scholar 

  49. H. Xu, J. Ju, W. Li, J. Zhang, J. Wang, B. Cao, Superior triethylamine-sensing properties based on TiO2/SnO2 n-n heterojunction nanosheets directly grown on ceramic tubes. Sens. Actuators B 228, 634–642 (2016). https://doi.org/10.1016/j.snb.2016.01.059

    Article  CAS  Google Scholar 

  50. L. Wang, Y. Wang, K. Yu, S. Wang, Y. Zhang, C. Wei, A novel low temperature gas sensor based on Pt-decorated hierarchical 3D SnO2 nanocomposites. Sens. Actuators B 232, 91–101 (2016). https://doi.org/10.1016/j.snb.2016.02.135

    Article  CAS  Google Scholar 

  51. C. Dong, Q. Li, G. Chen, X. Xiao, Y. Wang, Enhanced formaldehyde sensing performance of 3D hierarchical porous structure Pt-functionalized NiO via a facile solution combustion synthesis. Sens. Actuators B 220, 171–179 (2015). https://doi.org/10.1016/j.snb.2015.05.056

    Article  CAS  Google Scholar 

  52. L. Guo, F. Chen, N. Xie, X. Kou, C. Wang, Y. Sun, F. Liu, X. Liang, Y. Gao, X. Yan, T. Zhang, G. Lu, Ultra-sensitive sensing platform based on Pt-ZnO-In2O3 nanofibers for detection of acetone. Sens. Actuators B 272, 185–194 (2018). https://doi.org/10.1016/j.snb.2018.05.161

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by National Key Research and Development Program of China (2017YFB0102900), the Shanghai Natural Science Foundation (19ZR1418900), Opening Project of Key Laboratory of Inorganic Functional Materials and Devices, Chinese Academy of Sciences (KLIFMD201704), National Natural Science Foundation of China (61671284; U1704255), Shanghai Pujiang Program (17PJD016) and the Shanghai Municipal Education Commission (Peak Discipline Construction program).We also acknowledge the Instrumental Analysis and Research Center of Shanghai University for providing measurement services.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaohong Wang or Jiaqiang Xu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Sun, Y., Fan, Y. et al. Effects of organotin halide perovskite and Pt nanoparticles in SnO2-based sensing materials on the detection of formaldehyde. J Mater Sci: Mater Electron 30, 20624–20637 (2019). https://doi.org/10.1007/s10854-019-02428-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02428-0

Navigation