Skip to main content
Log in

Molar optimization of MnO2 to form composite with Co3O4 by potentiodynamic electrodeposition for better electrochemical characterizations

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Manganese incorporated cobalt oxide thin films were deposited on stainless steel by using potentiodynamic electrodeposition via aqueous route. The structural elucidation reveals face-centered cubic Co3O4 and orthorhombic MnO2 having polycrystalline nature. FESEM and TEM show porous granular surface morphology along with nano-spikes. AFM image exhibits granular morphology. Optimized samples were studied for further electrochemical characterizations. All CV curves show mixed capacitive behavior. As compared to others, 1% manganese incorporation electrode shows maximum specific capacitance 605.39 F/g at 2 mV/s in 1M KOH. Chronopotentiometric charge–discharge studies report power density 18.12 kW/kg, energy density 33.7 Wh/kg and columbic efficiency 73.89%. To know the internal resistive properties of the electrode, the electrochemical impedance analysis was carried out in the frequency range 1 mHz to 1 MHz. Using Nyquist plot, the observed internal resistance is ~ 0.78 Ω. ZsimpWin software was used to develop Randle’s equivalent circuit to search the circuitry parameters associated with the cell.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. F. Béguin, V. Presser, A. Balducci, E. Frackowiak, Adv. Mater. 26, 2219–2251 (2014)

    Article  Google Scholar 

  2. R. Kötz, M. Carlen, Electrochim. Acta 45, 2483–2498 (2000)

    Article  Google Scholar 

  3. C.D. Lokhande, D.P. Dubal, O.S. Joo, Curr. Appl. Phys. 11, 255–270 (2011)

    Article  Google Scholar 

  4. D. Wu, Y. Niu, C. Wang, H. Wu, Q. Li, Z. Chen, B. Xu, H. Li, L.Y. Zhang, J. Colloid Interface Sci. 552, 633–638 (2019)

    Article  CAS  Google Scholar 

  5. B.C. Kim, G.G. Wallace, Y.I. Yoon, J.M. Ko, C.O. Too, Synth. Met. 159, 1389–1392 (2009)

    Article  CAS  Google Scholar 

  6. Z. Zhang, Y. Gong, D. Wu, Z. Li, Q. Li, L. Zheng, W. Chen, W. Yuan, L.Y. Zhang, Int. J. Hydrogen Energy 44, 2731–2740 (2019)

    Article  CAS  Google Scholar 

  7. Y. Gong, X. Liu, Y. Gong, D. Wu, B. Xu, L. Bi, L.Y. Zhang, X.S. Zhao, J. Colloid Interface Sci. 530, 189–195 (2018)

    Article  CAS  Google Scholar 

  8. S.V. Khavale, B.J. Lokhande, J. Mater. Sci.: Mater. Electron. 28, 5106–5115 (2016)

    Google Scholar 

  9. S.V. Khavale, B.J. Lokhande, IJRE 2, 20–25 (2015)

    Google Scholar 

  10. S.V. Khavale, S.R. Bharadwaj, B.J. Lokhande, IJRE 2, 106–113 (2012)

    Google Scholar 

  11. A.V. Thakur, B.J. Lokhande, Chem. Pap. (2018). https://doi.org/10.1007/s11696-018-0383-0

    Article  Google Scholar 

  12. A.V. Thakur, B.J. Lokhande, J. Mater. Sci.: Mater. Electron. 28, 11755–11761 (2017)

    CAS  Google Scholar 

  13. R.C. Ambare, S.R. Bharadwaj, B.J. Lokhande, Measurement 88, 66–76 (2016)

    Article  Google Scholar 

  14. T.D. Dang, T.T. Le Hang, T.B. Thuy Hoang, T.T. Mai, Adv. Nat. Sci: Nanosci. Nanotechnol. 6, 025011 (2015)

    Google Scholar 

  15. J. Xu, L. Gao, J. Cao, W. Wang, Z. Chen, Electrochim. Acta 56, 732–736 (2010)

    Article  CAS  Google Scholar 

  16. L. Wang, X. Liu, X. Wang, X. Yang, L. Lu, Curr. Appl. Phys. 10, 422–1426 (2010)

    Article  Google Scholar 

  17. T. Yousef, A.N. Golikand, M.H. Mashhadizadeh, M. Aghazadeh, Curr. Appl. Phys. 12, 544–549 (2012)

    Article  Google Scholar 

  18. X. Cui, F. Hu, W. Wei, W. Chen, Carbon 49, 1225–1234 (2011)

    Article  CAS  Google Scholar 

  19. C.C. Hu, C.Y. Hung, K.H. Chang, Y.L. Yang, J. Power Sources 196, 847–850 (2011)

    Article  CAS  Google Scholar 

  20. Y.F. Lee, K.H. Chang, C.C. Hu, Y.H. Chu, J. Power Sources 206, 469–475 (2012)

    Article  Google Scholar 

  21. B. Wang, J. Park, C. Wang, H. Ahn, G. Wang, Electrochim. Acta 55, 6812–6817 (2010)

    Article  CAS  Google Scholar 

  22. W. Wei, X. Cui, X. Mao, W. Chen, D.G. Lvey, Electrochim. Acta 56, 1619–1628 (2011)

    Article  CAS  Google Scholar 

  23. D.P. Dubal, D.S. Dhawale, R.R. Salunkhe, C.D. Lokhande, J. Alloys Compd. 496, 370–375 (2010)

    Article  CAS  Google Scholar 

  24. R.C. Ambare, S.R. Bharadwaj, B.J. Lokhande, Curr. Appl. Phys. 11, 1582–1590 (2014)

    Article  Google Scholar 

  25. H. Pang, J. Deng, J. Du, S. Li, J. Li, Y. Ma, J. Zhang, J. Chen. Dal. Trans. 41, 10175–10181 (2012)

    Article  CAS  Google Scholar 

  26. H. Che, Y. Lv, A. Liu, J. Mu, X. Zhang, Y. Bai, Ceram. Int. 43, 6054–6062 (2017)

    Article  CAS  Google Scholar 

  27. S. Jiang, T. Shi, H. Long, Y. Sun, W. Zhou, Z. Tang, Nanoscale Res. Lett. 9, 492 (2014)

    Article  Google Scholar 

  28. L.Y. Zhang, Y. Gong, D. Wu, Z. Li, Q. Li, L. Zheng, W. Chen, Appl. Surf. Sci. 469, 305–311 (2019)

    Article  CAS  Google Scholar 

  29. A.M. Magdy, I.F. Kooli, S.N. Alamri, Int. J. Electrochem. Sci. 8, 12308–12320 (2013)

    Google Scholar 

  30. B.J. Lokhande, R.C. Ambare, S.R. Bharadwaj, Measurement 47, 427–432 (2014)

    Article  Google Scholar 

  31. C. Hu, T. Tsou, J. Power Sources 115, 179–186 (2003)

    Article  CAS  Google Scholar 

  32. G. Wang, J. Huang, S. Chen, D. Cao, J. Power Sources 196, 5756–5760 (2011)

    Article  CAS  Google Scholar 

  33. R.C. Ambare, B.J. Lokhande, J. Anal. Appl. Pyrol. 132, 245–253 (2018)

    Article  CAS  Google Scholar 

  34. R.C. Ambare, S.R. Bhradwaj, B.J. Lokhande, Appl. Surf. Sci. 349, 887–896 (2015)

    Article  CAS  Google Scholar 

  35. A.D. Jagadale, V.S. Kumbhar, R.N. Bulakhe, C.D. Lokhande, Energy 64, 234–241 (2014)

    Article  CAS  Google Scholar 

  36. Y.X. Zhang, M. Huang, F. Li, X.L. Wang, Z.Q. Wen, J. Power Sources 246, 449–456 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to thank Department of Science and Technology, New Delhi for providing financial supports through the project scheme DST-SERB sanction no. SB/EMEQ-331/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. C. Ambare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khavale, S.V., Ambare, R.C. & Lokhande, B.J. Molar optimization of MnO2 to form composite with Co3O4 by potentiodynamic electrodeposition for better electrochemical characterizations. J Mater Sci: Mater Electron 31, 7315–7323 (2020). https://doi.org/10.1007/s10854-019-02420-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02420-8

Navigation