Skip to main content
Log in

Enhanced rate capability and cycling stability of lithium-rich cathode material Li1.2Ni0.2Mn0.6O2 via H3PO4 pretreating and accompanying Li3PO4 coating

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

H3PO4 pretreated and Li3PO4 coated Li-rich materials Li1.2Ni0.2Mn0.6O2 have been prepared via hydrothermal followed by a facile modified method. The pretreated process partially extracts Li and O from lattice, results in pre-activation of Li2MnO3 component and the formation of spinel phase. A stable Li3PO4 coating is formed on the surface of the material during the subsequent heat treatment. H3PO4 pretreatment and Li3PO4 coating are skillfully combined using a simple method. Electrochemical studies exhibit that the electrochemical performance of Li1.2Ni0.2Mn0.6O2 is obviously improved after surface modification. The surface treated material with 0.04 mol L−1 H3PO4 shows more excellent electrochemical properties than those of Li1.2Ni0.2Mn0.6O2 cathode, with a high specific discharge capacity of 262.6 mAh g−1 at 0.1 C, a great capacity retention of 92.2% at 1 C after 100 cycles, and an outstanding rate capability reaching 105.4 mAh g−1 at 10 C. The enhanced performance is caused by the formation of spinel phase and Li3PO4 coating layer, which can accelerate the migration of Li+ and facilitate the charge transfer reaction. The Li3PO4 coating also inhibits the dissolution of transition metal ions and enhances the stability of electrode/electrolyte interface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. M. Armand, J.-M. Tarascon, Building better batteries. Nature 451, 652–657 (2008)

    Article  CAS  Google Scholar 

  2. J. Zheng, P. Xu, M. Gu, J. Xiao, N.D. Browning, P. Yan, C. Wang, J.-G. Zhang, Structural and chemical evolution of Li- and Mn-rich layered cathode material. Chem. Mater. 27, 1381–1390 (2015)

    CAS  Google Scholar 

  3. C. Guan, J. Wang, Recent development of advanced electrode materials by atomic layer deposition for electrochemical energy storage. Adv. Sci. 3, 1500405 (2016)

    Google Scholar 

  4. H. Yu, H. Zhou, High-energy cathode materials (Li2MnO3-LiMO2) for lithium-ion batteries. J. Phys. Chem. Lett. 4, 1268–1280 (2013)

    CAS  Google Scholar 

  5. Z. Xiao, J. Meng, Q. Li, X. Wang, M. Huang, Z. Liu, C. Han, L. Mai, Novel MOF shell-derived surface modification of Li-rich layered oxide cathode for enhanced lithium storage. Sci. Bull. 63, 46–53 (2018)

    CAS  Google Scholar 

  6. B. Qiu, C. Yin, Y. Xia, Z. Liu, Synthesis of three-dimensional nanoporous Li-rich layered cathode oxides for high volumetric and power energy density lithium-ion batteries. ACS Appl. Mater. Interfaces. 9, 3661–3666 (2017)

    CAS  Google Scholar 

  7. H. Yu, H. Kim, Y. Wang, P. He, D. Asakura, Y. Nakamura, H. Zhou, High-energy ‘composite’ layered manganese-rich cathode materials via controlling Li2MnO3 phase activation for lithium-ion batteries. Phys. Chem. Chem. Phys. 14, 6584–6595 (2012)

    Google Scholar 

  8. C. Zhu, Y. Ma, W. Zang, C. Guan, X. Liu, S.J. Pennycook, J. Wang, W. Huang, Conformal dispersed cobalt nanoparticles in hollow carbon nanotube arrays for flexible Zn-air and Al-air batteries. Chem. Eng. J. 369, 988–995 (2019)

    CAS  Google Scholar 

  9. J. Liu, H. Chen, J. Xie, Z. Sun, N. Wu, B. Wu, Electrochemical performance studies of Li-rich cathode materials with different primary particle sizes. J. Power Sources 251, 208–214 (2014)

    CAS  Google Scholar 

  10. M.G. Verde, H. Liu, K.J. Carroll, L. Baggetto, G.M. Veith, Y.S. Meng, Effect of morphology and manganese valence on the voltage fade and capacity retention of Li[Li2/12Ni3/12Mn7/12]O2. ACS Appl. Mater. Interfaces. 6, 18868–18877 (2014)

    CAS  Google Scholar 

  11. P.K. Nayak, J. Grinblat, E. Levi, B. Markovsky, D. Aurbach, Effect of cycling conditions on the electrochemical performance of high capacity Li and Mn-rich cathodes for Li-ion batteries. J. Power Sources 318, 9–17 (2016)

    CAS  Google Scholar 

  12. C.S. Johnson, J.-S. Kim, C. Lefief, N. Li, J.T. Vaughey, M.M. Thackeray, The signification of the Li2MnO3 component in ‘composite’ xLi2MnO3·(1-x)LiMn0.5Ni0.5O2 electrodes. Electrochem. Commun. 6, 1085–1091 (2014)

    Google Scholar 

  13. W. Ren, Y. Zhao, X. Hu, M. Xia, Preparation-microstructure-performance relationship of Li-rich transition metal oxides microspheres as cathode materials for lithium ion batteries. Electrochim. Acta 191, 491–499 (2016)

    CAS  Google Scholar 

  14. E. Lee, R. Koritala, D.J. Miller, C.S. Johnson, Aluminum and gallium substitution into 0.5Li2MnO3·0.5Li(Ni0.375Mn0.375Co0.25)O2 layered composite and the voltage fade effect. J. Electrochem. Soc. 162, A322–A329 (2015)

    CAS  Google Scholar 

  15. G.-Z. Wei, X. Lu, F.-S. Ke, L. Huang, J.-T. Li, Z.-X. Wang, Z.-Y. Zhou, S.-G. Sun, Crystal habit-tuned nanoplate material of Li[Li1/3-2x/3NixMn2/3-x/3]O2 for high-rate performance lithium-ion batteries. Adv. Mater. 22, 4364–4367 (2010)

    CAS  Google Scholar 

  16. Z. Zheng, X.-D. Guo, Y.-J. Zhong, W.-B. Hua, C.-H. Shen, S.-L. Chou, X.-S. Yang, Host structural stabilization of Li1.232Mn0.615Ni0.154O2 through K-doping attempt: toward superior electrochemical performances. Electrochim. Acta 188, 336–343 (2016)

    CAS  Google Scholar 

  17. F. Fu, G.-L. Xu, Q. Wang, Y.-P. Deng, X. Li, J.-T. Li, L. Huang, S.-G. Sun, Synthesis of single crystalline hexagonal nanobricks of LiNi1/3Co1/3Mn1/3O2 with high percentage of exposed 010 active facets as high rate performance cathode material for lithium-ion battery. J. Mater. Chem. A 1, 3860–3864 (2013)

    CAS  Google Scholar 

  18. J. Ma, Y.-N. Zhou, Y. Gao, X. Yu, Q. Kong, L. Gu, Z. Wang, X.-Q. Yang, L. Chen, Feasibility of using Li2MoO3 in constructing Li-rich high energy density cathode materials. Chem. Mater. 26, 3256–3262 (2014)

    CAS  Google Scholar 

  19. H. Chen, Z. He, Z. Huang, L. Song, C. Shen, J. Liu, The effect of multifunctional coating on Li-rich cathode material with hollow spherical structure for Li ion battery. Ceram. Int. 43, 8616–8624 (2017)

    CAS  Google Scholar 

  20. F. Wu, Q. Li, L. Bao, Y. Zheng, Y. Lu, Y. Su, J. Wang, S. Chen, R. Chen, J. Tian, Role of LaNiO3 in suppressing voltage decay of layered lithium-rich cathode materials. Electrochim. Acta 260, 986–993 (2018)

    CAS  Google Scholar 

  21. T.-F. Yi, Y.-M. Li, S.-Y. Yang, Y.-R. Zhu, Y. Xie, Improved cycling stability and fast charge-discharge performance of cobalt-free lithium-rich oxides by magnesium-doping. ACS Appl. Mater. Interfaces. 8, 32349–32359 (2016)

    CAS  Google Scholar 

  22. D. Xie, G. Li, Q. Li, C. Fu, J. Fan, L. Li, Improved cycling stability of cobalt-free Li-rich oxides with a stable interface by dual doping. Electrochim. Acta 196, 505–516 (2016)

    CAS  Google Scholar 

  23. Y. Xia, H. Zhu, C. Liang, Z. Xiao, Y. Gan, J. Zhang, X. Tao, H. Huang, W. Zhang, Synthesis and electrochemical properties of LiMnPO4-modified Li[Li0.2Mn0.534Co0.133Ni0.133]O2 cathode material for Li-ion batteries. Electrochim. Acta 235, 1–9 (2017)

    CAS  Google Scholar 

  24. T. Zhao, L. Li, R. Chen, H. Wu, X. Zhang, S. Chen, M. Xie, F. Wu, J. Lu, K. Amine, Design of surface protective layer of LiF/FeF3 nanoparticles in Li-rich cathode for high-capacity Li-ion batteries. Nano Energy 15, 164–176 (2015)

    CAS  Google Scholar 

  25. X. Xiang, X. Li, W. Li, Preparation and characterization of size-uniform Li[Li0.131Ni0.304Mn0.565]O2 particles as cathode materials for high energy lithium ion battery. J. Power Sources 230, 89–95 (2013)

    CAS  Google Scholar 

  26. P.K. Nayak, J. Grinblat, E. Levi, M. Levi, B. Markovsky, D. Aurbach, Understanding the influence of Mg doping for the stabilization of capacity and higher discharge voltage of Li- and Mn-rich cathode for Li-ion batteries. Phys. Chem. Chem. Phys. 19, 6142–6152 (2017)

    CAS  Google Scholar 

  27. Y. Lee, J. Lee, K.Y. Lee, J. Mun, J.K. Lee, W. Choi, Facile formation of a Li3PO4 coating layer during the synthesis of a lithium-rich layered oxide for high-capacity lithium-ion batteries. J. Power Sources 315, 284–293 (2016)

    CAS  Google Scholar 

  28. X. Bian, Q. Fu, X. Bie, P. Yang, H. Qiu, Q. Pang, G. Chen, F. Du, Y. Wei, Improved electrochemical performance and thermal stability of Li-excess Li1.18Co0.15Ni0.15Mn0.52O2 cathode material by Li3PO4 surface coating. Electrochim. Acta 174, 875–884 (2015)

    CAS  Google Scholar 

  29. Z. Wang, S. Luo, J. Ren, D. Wang, X. Qi, Enhanced electrochemical performance of Li-rich cathode Li[Li0.2Mn0.54Ni0.13Co0.13]O2 by surface modification with lithium ion conductor Li3PO4. Appl. Surf. Sci. 370, 437–444 (2016)

    CAS  Google Scholar 

  30. D. Chen, F. Zheng, L. Li, M. Chen, X. Zhong, W. Li, L. Lu, Effect of Li3PO4 coating of layered lithium-rich oxide on electrochemical performance. J. Power Sources 341, 147–155 (2017)

    CAS  Google Scholar 

  31. X. Hu, H. Guo, J. Wang, Z. Wang, X. Li, Q. Hu, W. Peng, Structural and electrochemical characterization of NH4F-pretreated lithium-rich layered Li[Li0.2Ni0.13Co0.13Mn0.54]O2 cathodes for lithium-ion batteries. Ceram. Int. 44, 14370–14376 (2018)

    CAS  Google Scholar 

  32. K. Xu, S. Pang, Y. Wang, X. Shen, H. Wen, W. Wang, Y. Su, X. Xi, Role of L-ascorbic acid-based treatment toward improving the electrochemical performance of Li-rich layered oxide. J. Electrochem. Soc. 164, A2348–A2354 (2017)

    CAS  Google Scholar 

  33. S.-H. Kang, C.S. Johnson, J.T. Vaughey, K. Amine, M.M. Thackeray, The effects of acid treatment on the electrochemical properties of 0.5Li2MnO3·0.5LiNi0.44Co0.25Mn0.31O2 electrodes in lithium cells. J. Electrochem. Soc. 153, A1186–A1192 (2006)

    CAS  Google Scholar 

  34. Z.-F. Tang, R. Wu, P.-F. Huang, Q.-S. Wang, C.-H. Chen, Improving the electrochemical performance of Ni-rich cathode material LiNi0.815Co0.15Al0.035O2 by removing the lithium residues and forming Li3PO4 coating layer. J. Alloys Compd 693, 1157–1163 (2017)

    CAS  Google Scholar 

  35. J. Huang, H. Liu, T. Hu, Y.S. Meng, J. Luo, Enhancing the electrochemical performance of Li-rich layered oxide Li1.13Ni0.3Mn0.57O2 via WO3 doping and accompanying spontaneous surface phase formation. J. Power Sources 375, 21–28 (2018)

    CAS  Google Scholar 

  36. H. Liu, D. Qian, M.G. Verde, M. Zhang, L. Baggetto, K. An, Y. Chen, K.J. Carroll, D. Lau, M. Chi, G.M. Veith, Y.S. Meng, Understanding the role of NH4F and Al2O3 surface co-modification on lithium-excess layered oxide Li1.2Ni0.2Mn0.6O2. ACS Appl. Mater. Interfaces. 7, 19189–19200 (2015)

    CAS  Google Scholar 

  37. W. Yan, Y. Xie, J. Jiang, D. Sun, X. Ma, Z. Lan, Y. Jin, Enhanced rate performance of Al-doped Li-rich layered cathode material via nucleation and post-solvothermal method. ACS Sustain. Chem. Eng. 6, 4625–4632 (2018)

    CAS  Google Scholar 

  38. X. Liu, T. Huang, A. Yu, Surface phase transformation and CaF2 coating for enhanced electrochemical performance of Li-rich Mn-based cathodes. Electrochim. Acta 163, 82–92 (2015)

    CAS  Google Scholar 

  39. P. Hou, G. Li, X. Gao, Tailoring atomic distribution in micron-sized and spherical Li-rich layered oxides as cathode materials for advanced lithium-ion batteries. J. Mater. Chem. A 4, 7689–7699 (2016)

    CAS  Google Scholar 

  40. H.Z. Zhang, Q.Q. Qiao, G.R. Li, X.P. Gao, PO43- polyanion-doping for stabilizing Li-rich layered oxides as cathode materials for advanced lithium-ion batteries. J. Mater. Chem. A 2, 7454–7460 (2014)

    CAS  Google Scholar 

  41. C. Yin, H. Zhou, Z. Yang, J. Li, Synthesis and electrochemical properties of LiNi0.5Mn1.5O4 for Li-ion batteries by the metal-organic framework method. ACS Appl. Mater. Interfaces. 10, 13625–13634 (2018)

    CAS  Google Scholar 

  42. T. Zhao, S. Chen, R. Chen, L. Li, X. Zhang, M. Xie, F. Wu, The positive roles of integrated layered-spinel structures combined with nanocoating in low-cost Li-rich cathode Li[Li0.2Fe0.1Ni0.15Mn0.55]O2 for lithium-ion batteries. Appl. Mater. Interfaces 6, 21711–21720 (2014)

    CAS  Google Scholar 

  43. H. Zhou, Z. Yang, C. Yin, S. Yang, J. Li, Fabrication of nanoplate Li-rich cathode material via surfactant-assisted hydrothermal method for lithium-ion batteries. Ceram. Int. 44, 20514–20523 (2018)

    CAS  Google Scholar 

  44. X. Wen, K. Liang, L. Tian, K. Shi, J. Zheng, Al2O3 coating on Li1.256Ni0.198Co0.082Mn0.689O2.25 with spinel-structure interface layer for superior performance lithium ion batteries. Electrochim. Acta 260, 549–556 (2018)

    CAS  Google Scholar 

  45. H. Zhou, Z. Yang, D. Xiao, K. Xiao, J. Li, An electrolyte to improve the deep charge-discharge performance of LiNi0.8Co0.15Al0.05O2 cathode. J. Mater. Sci.: Mater. Electron. 29, 6648–6659 (2018)

    CAS  Google Scholar 

  46. J. Zhang, Z. Lei, J. Wang, Y. NuLi, J. Yang, Surface modification of by hydrazine vapor as cathode material for lithium-ion batteries. Appl. Mater. Interfaces 7, 15821–15829 (2015)

    CAS  Google Scholar 

  47. L. Liao, J. Xie, S. Zhang, G. Cao, X. Zhao, Facile synthesis of nanostructured LiMnPO4 as a high-performance cathode material with long cycle life and superior rate capability. RSC Adv. 5, 99632–99639 (2015)

    CAS  Google Scholar 

  48. S.-L. Chou, J.-Z. Wang, H.-K. Liu, S.-X. Due, Rapid synthesis of Li4Ti5O12 microspheres as anode materials and its binder effect for lithium-ion battery. J. Phys. Chem. C 115, 16220–16227 (2011)

    CAS  Google Scholar 

  49. B. Li, C. Han, Y.-B. He, C. Yang, H. Du, Q.-H. Yang, F. Kang, Facile synthesis of Li4Ti5O12/C composite with super rate performance. Energy Environ. Sci. 5, 9595–9602 (2012)

    CAS  Google Scholar 

Download references

Acknowledgements

Financial supports from the National Science Foundation of China, Granted No. 51371198 and Technology Project of Changsha, Granted No. K1202039-11 are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hongming Zhou, Jian Li or Chengjie Yin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 91 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, Z., Zhou, H., Bao, Z. et al. Enhanced rate capability and cycling stability of lithium-rich cathode material Li1.2Ni0.2Mn0.6O2 via H3PO4 pretreating and accompanying Li3PO4 coating. J Mater Sci: Mater Electron 30, 19493–19504 (2019). https://doi.org/10.1007/s10854-019-02315-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02315-8

Navigation