Skip to main content

Advertisement

Log in

Enhancing the dielectric relaxor behavior and energy storage properties of 0.6Ba(Zr0.2Ti0.8)O3–0.4(Ba0.7Ca0.3)TiO3 ceramics through the incorporation of paraelectric SrTiO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Recently, relaxor ferroelectric materials have been attracting considerable attention as energy storage capacitors due to their potential applications in pulsed power systems. In this work, lead-free (1−x)[0.6Ba(Zr0.2Ti0.8)O3–0.4(Ba0.7Ca0.3)TiO3]–xSrTiO3 [(1−x)BZCT–xSTO] relaxor ceramics have been synthesized and their relaxor behavior is modulated via STO doping content. The incorporation of STO weakens the ferroelectric long-range order in BZCT, which favors the relaxor behavior, as experimentally proved by temperature dependent dielectric spectroscopy and polarization–electric field studies. The compositional dependence of energy storage properties in (1−x)BZCT–xSTO ceramics gave the optimum value at x = 0.15. Further, 0.85BZCT–0.15STO ceramics show the highest energy storage performance with a recoverable energy density of 0.987 J/cm3, efficiency of 84%, and high power density of 1.93 × 105 W/cm3 at an electric field of 108 kV/cm. Our ceramics show superior performance compared to previously reported values in BZCT based lead-free ceramics. The results reported here demonstrate that (1−x) BZCT–xSTO ceramics are potential candidates for energy storage capacitor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Z. Yang, H. Du, S. Qu, Y. Hou, H. Ma, J. Wang, J. Wang, X. Wei, Z. Xu, J. Mater. Chem. A 4, 13778–13785 (2016)

    CAS  Google Scholar 

  2. Y. Zhao, X. Hao, Q. Zhang, A.C.S. Appl, Mater. Interfaces 6, 11633–11639 (2014)

    CAS  Google Scholar 

  3. H. Pan, J. Ma, J. Ma, Q. Zhang, X. Liu, B. Guan, L. Gu, X. Zhang, Y. Zhang, L. Li, Y. Shen, Y.H. Lin, C.W. Nan, Nat. Commun. 9, 1813 (2018)

    Google Scholar 

  4. Z. Yao, Z. Song, H. Hao, Z. Yu, M. Cao, S. Zhang, M.T. Lanagan, H. Liu, Adv. Mater. 29, 1601727 (2017)

    Google Scholar 

  5. M.H. Park, H.J. Kim, Y.J. Kim, T. Moon, K.D. Kim, C.S. Hwang, Adv. Energy Mater. 4, 1400610 (2014)

    Google Scholar 

  6. Q. Li, L. Chen, M.R. Gadinski, S. Zhang, G. Zhang, H. Li, A. Haque, L. Chen, T. Jackson, Q. Wang, Nature 523, 576–580 (2015)

    CAS  Google Scholar 

  7. M. Zhou, R. Liang, Z. Zhou, S. Yan, X. Dong, Sustainable. Chem. Eng. 6, 12755–12765 (2018)

    CAS  Google Scholar 

  8. J.P.B. Silva, J.M.B. Silva, M.J.S. Oliveira, T. Weingärtner, K.C. Sekhar, M. Pereira, M.J.M. Gomes, Adv. Funct. Mater. 29, 1807196 (2018)

    Google Scholar 

  9. H. Palneedi, M. Peddigari, G.T. Hwang, D.Y. Jeong, J. Ryu, Adv. Funct. Mater. 28, 1803665 (2018)

    Google Scholar 

  10. X. Liu, Y. Li, X. Hao, J. Mater. Chem. A 7, 11858–11866 (2019)

    CAS  Google Scholar 

  11. Z. Yan, D. Zhang, X. Zhou, H. Qi, H. Luo, K. Zhou, I. Abrahams, H. Yan, J. Mater. Chem. A 7, 10702–10711 (2019)

    CAS  Google Scholar 

  12. F. Benabdallah, A. Simon, H. Khemakhem, C. Elissalde, M. Maglione, J. Appl. Phys. 109, 124116 (2011)

    Google Scholar 

  13. B. Peng, Q. Zhang, X. Li, T. Sun, H. Fan, S. Ke, M. Ye, Y. Wang, W. Lu, H. Niu, J.F. Scott, X. Zeng, H. Huang, Adv. Electron. Mater. 1, 1500052 (2015)

    Google Scholar 

  14. B. Li, Q.X. Liu, X.G. Tang, T.F. Zhang, Y.P. Jiang, W.H. Li, J. Luo, RSC Adv. 7, 43327 (2017)

    CAS  Google Scholar 

  15. B. Qu, H. Du, Z. Yang, J. Mater. Chem. C 4, 1795–1803 (2016)

    CAS  Google Scholar 

  16. M. Zhou, R. Liang, Z. Zhou, X. Dong, Ceram. Int. 45, 3582–3590 (2019)

    CAS  Google Scholar 

  17. X. Liu, J. Shi, F. Zhu, H. Du, T. Li, X. Liu, H. Lu, J. Materiomics 4, 202–207 (2018)

    Google Scholar 

  18. M. Zhou, R. Liang, Z. Zhou, X. Dong, J. Mater. Chem. C 6, 8528–8537 (2018)

    CAS  Google Scholar 

  19. X. Lu, J. Xu, L. Yang, C. Zhou, Y.Y. Zhao, C. Yuan, Q. Li, G. Chen, H. Wang, J. Materiomics 2, 87–93 (2016)

    Google Scholar 

  20. F. Yan, H. Yang, Y. Lin, T. Wang, J. Mater. Chem. C 6, 7905–7912 (2018)

    CAS  Google Scholar 

  21. H. Yang, F. Yan, Y. Lin, T. Wang, F. Wang, Sci. Rep. 7, 8726 (2017)

    Google Scholar 

  22. G.R. Love, Energy storage in ceramic dielectrics. J. Am. Ceram. Soc. 73, 323–328 (1990)

    CAS  Google Scholar 

  23. B. Peng, Z. Xie, Z. Yue, L. Li, Appl. Phys. Lett. 105, 052904 (2014)

    Google Scholar 

  24. W. Liu, X. Ren, Phys. Rev. Lett. 103, 257602 (2009)

    Google Scholar 

  25. V.S. Puli, D.K. Pradhan, D.B. Chrisey, M. Tomozawa, G.L. Sharma, J.F. Scott, R.S. Katiyar, J. Mater. Sci. 48, 2151–2157 (2013)

    CAS  Google Scholar 

  26. A.R. Jayakrishnan, K.V. Alex, A. Thomas, J.P.B. Silva, K. Kamakshi, N. Dabra, K.C. Sekhar, J. Agostinho Moreira, M.J.M. Gomes, Ceram. Int. 45, 5808–5818 (2019)

    CAS  Google Scholar 

  27. J. Gao, Y. Wang, Y. Liu, X. Hu, X. Ke, L. Zhong, Y. He, X. Ren, Sci. Rep. 7, 40916 (2017)

    CAS  Google Scholar 

  28. A.B. Swain, V. Subramanian, P. Murugavel, Ceram. Int. 44, 6861–6865 (2018)

    CAS  Google Scholar 

  29. L. Lv, Y. Wang, L. Gan, Q. Liu, J.P. Zhou, J. Mater. Sci.: Mater. Electron. 29, 14883–14889 (2018)

    CAS  Google Scholar 

  30. I.W. Chen, X.H. Wang, Nature 404, 168–171 (2000)

    CAS  Google Scholar 

  31. S.J. Underwood, J.M. Gorham, Challenges and approaches for particle size analysis on micrographs of nanoparticles loaded onto textile surfaces. NIST Spec. Pub. 1200, 22 (2017). https://doi.org/10.6028/NIST.SP.1200-22

    Article  Google Scholar 

  32. M. Nesselberger, M. Roefzaad, R.F. Hamou, P.U. Biedermann, F.F. Schweinberger, S. Kunz, K. Schloegl, G.K.H. Wiberg, S. Ashton, U. Heiz, K.J.J. Mayrhofer, M. Arenz, Nat. Mater. 12, 919–924 (2013)

    CAS  Google Scholar 

  33. C.A. Schneider, W.S. Rasband, K.W. Eliceiri, Nat. Methods 9, 671–675 (2012)

    CAS  Google Scholar 

  34. J.P.B. Silva, E.C. Queiros, P.B. Tavares, K.C. Sekhar, K. Kamakshi, J. Agostinho Moreira, A. Almeida, M. Pereira, M.J.M. Gomes, J. Electroceram. 35, 135–140 (2015)

    CAS  Google Scholar 

  35. S.M. Mane, P.M. Tirmali, S.B. Kulkarni, Mater. Chem. Phys. 213, 482 (2018)

    CAS  Google Scholar 

  36. S. Sasikumar, R. Saravanan, S. Saravanakumar, J. Mater. Sci.: Mater. Electron. 29, 1198–1208 (2018)

    CAS  Google Scholar 

  37. Y. Tian, Y. Gong, D. Meng, Y. Li, B. Kuang, J. Electron. Mater. 44, 2890–2897 (2015)

    CAS  Google Scholar 

  38. Y. Zhou, Q. Lin, W. Liu, D. Wang, RSC Adv. 6, 14084–14089 (2016)

    CAS  Google Scholar 

  39. A. Ioachim, M.I. Toacsan, M.G. Banciu, L. Nedelcu, F. Vasiliu, H.V. Alexandru, C. Berbecaru, G. Stoica, Prog. Solid State Chem. 35, 513–520 (2007)

    CAS  Google Scholar 

  40. D. Hennings, Int. J. High Technol. Ceram. 3, 91–111 (1987)

    CAS  Google Scholar 

  41. J.H. Yoo, W. Gao, J. Mater. Sci. 34, 5361–5369 (1999)

    CAS  Google Scholar 

  42. M.H. Frey, Z. Xu, P. Han, D.A. Payne, Ferroelectrics 206, 337–353 (1998)

    Google Scholar 

  43. I. Coondoo, N. Panwar, H. Amorín, M. Alguero, A.L. Kholkin, J. Appl. Phys. 113, 214107 (2013)

    Google Scholar 

  44. X.G. Tang, K.H. Chew, H.L.W. Chan, Acta Mater. 52, 5177–5183 (2004)

    CAS  Google Scholar 

  45. R.L. Moreira, R.P.S.M. Lobo, J. Phys. Soc. Jpn. 61, 1992–1995 (1992)

    CAS  Google Scholar 

  46. J. Wu, A. Mahajan, L. Riekehr, H. Zhang, B. Yang, N. Meng, Z. Zhang, H. Yana, Nano Energy 50, 723–732 (2018)

    CAS  Google Scholar 

  47. Q. Yuan, F. Yao, Y. Wang, R. Ma, H. Wang, J. Mater. Chem. C 5, 9552–9558 (2017)

    CAS  Google Scholar 

  48. N. Liu, R. Liang, Z. Zhou, X. Dong, J. Mater. Chem. C 6, 10211–10217 (2018)

    CAS  Google Scholar 

  49. S. Roy, R. Maharana, S.R. Reddy, S. Singh, P. Kumar, T. Karthik, S. Asthana, V.V. Bhanu Prasad, S.V. Kamat, Mater. Res. Express 3, 35702 (2016)

    Google Scholar 

  50. S. Fuentes, E. Chávez, L. Padilla-Campos, D.E. Diaz-Droguett, Ceram. Int. 39, 8823–8831 (2013)

    CAS  Google Scholar 

  51. V. Shoemaker, D.P. Stevenson, J. Am. Chem. Soc. 63, 37–40 (1941)

    Google Scholar 

  52. B. Luo, X. Wang, E. Tian, H. Song, H. Wang, L. Li, Appl. Mater. Interfaces 9, 19963 (2017)

    CAS  Google Scholar 

  53. Z. Zhao, V. Buscaglia, M. Viviani, M.T. Buscaglia, L. Mitoseriu, A. Testino, M. Nygren, M. Johnsson, P. Nanni, Phys. Rev. B 70, 024107 (2004)

    Google Scholar 

  54. M. Kosec, V. Bobnar, M. Hrovat, J. Bernard, B. Malic, J. Holc, J. Mater. Res. 19, 1849–1854 (2004)

    CAS  Google Scholar 

  55. D. Zhan, Q. Xu, D. Huang, H. Liu, W. Chen, F. Zhang, J. Alloys Compd. 682, 594–600 (2016)

    CAS  Google Scholar 

  56. D. Zhan, Q. Xu, D. Huang, H. Liu, W. Chen, F. Zhang, J. Phys. Chem. Solids 114, 220–227 (2018)

    CAS  Google Scholar 

  57. D.K. Kushvaha, S.K. Rout, B. Tiwari, J. Alloys Compd. 782, 270–276 (2019)

    CAS  Google Scholar 

  58. W. Ping, W. Liu, S. Li, Ceram. Int. 45, 11388–11394 (2019)

    CAS  Google Scholar 

  59. X. Chen, X. Chao, Z. Yang, Mater. Res. Bull. 11, 259–266 (2019)

    Google Scholar 

Download references

Acknowledgements

This work was supported by (i) DST-SERB, Govt. of India through Grant ECR/2017/000068 and (ii) UGC through Grant Nos. F.4-5(59-FRP/2014(BSR)). The authors AR Jayakrishnan acknowledges Central University of Tamil Nadu, India for his Ph.D. fellowship. K.V.A. acknowledges the DST for the Inspire fellowship IF170601. The author KK acknowledges DST –SERB for the financial support through grant no: ECR/2017/002537. The authors JPBS and MJMG acknowledge Portuguese Foundation for Science and Technology (FCT) for the financial support through the framework of the Strategic Funding UID/FIS/04650/2019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. C. Sekhar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayakrishnan, A.R., Alex, K.V., Kamakshi, K. et al. Enhancing the dielectric relaxor behavior and energy storage properties of 0.6Ba(Zr0.2Ti0.8)O3–0.4(Ba0.7Ca0.3)TiO3 ceramics through the incorporation of paraelectric SrTiO3. J Mater Sci: Mater Electron 30, 19374–19382 (2019). https://doi.org/10.1007/s10854-019-02299-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02299-5

Navigation