Skip to main content
Log in

Enhanced dielectric properties and theoretical modeling of PVDF–ceramic composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The ceramic-polymer composites, consisting of (Bi0.5K0.5)(Fe0.5Nb0.5)O3 [BKFN] as fillers and poly (vinylidene fluoride) (PVDF) as matrix, with different ratios (weight ratio of BKFN to PVDF, are 10%, 30% and 50%) have been prepared by using a solution casting method. The X-ray diffraction (XRD) pattern evidenced a semi-crystalline structure containing mixed α-, β- and γ- phases of PVDF which was further confirmed by Fourier transform-infrared spectroscopy. Using scanning electron micrograph, the dispersion of the particulate filler in PVDF matrix is examined. With an increase of BKFN content, in the BKFN–PVDF composite films, both the dielectric constant and remnant polarizations showed a remarkable increase as compared to those of PVDF. Different theoretical models were proposed with experimental data to determine the effective dielectric constants of the prepared composites. Also, increased optical band gap is observed due to addition of BKFN in PVDF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. R.K. Goyal, S.S. Katkade, D.M. Mule, Dielectric, mechanical and thermal properties of polymer/BaTiO3 composites for embedded capacitor. Composites B 44, 128–132 (2013)

    Article  CAS  Google Scholar 

  2. Q. Xiao, L. Li, B.Q. Zhang, X.M. Chen, Poly-vinylidene fluoride-modified BaTiO3 composites with high dielectric constant and temperature stability. Ceram. Int. 39, S3–S7 (2013)

    Article  CAS  Google Scholar 

  3. I. Pleşa, P.V. Noţingher, S. Schlögl, C. Sumereder, M. Muhr, Properties of polymer composites used in high-voltage applications. Polymers (2016). https://doi.org/10.3390/polym8050173

    Article  Google Scholar 

  4. V.S. Nisa, S. Rajesh, K.P. Murali, V. Priyadarsini, S.N. Potty, R. Ratheesh, Preparation, characterization and dielectric properties of temperature stable SrTiO3/PEEK composites for microwave substrate applications. Compos. Sci. Technol. 68, 106–112 (2008)

    Article  CAS  Google Scholar 

  5. P. Mishra, P. Kumar, Enhancement of dielectric properties of 0.2[BZT-BCT]–0.8[(1–x) epoxy–xCCTO] (x = 0.02, 0.04, 0.06, 0.08 & 0.1) composites for embedded capacitor and energy harvesting applications. J. Alloy. Compd. 617, 899–904 (2014)

    Article  CAS  Google Scholar 

  6. G. Longcheng, G. Liang, Y. Shen, G. Aijuan, L. Yuan, Preparation of high k expanded graphite/CaCuTi4O12/cyanate ester composites with low dielectric loss through controlling the interfacial action between conductors and ceramics. Composites B 58, 66–75 (2014)

    Article  Google Scholar 

  7. F. Wang, W. Li, H. Jiang, M. Xue, L. Jinshan, J. Yao, Preparation and dielectric properties of Ba0.95Ca0.05Ti0.8Zr0.2O3-polyethersulfone composites. J. Appl. Phys. 107, 043528 (2010)

    Article  Google Scholar 

  8. P. Martins, A.C. Lopes, S. Lanceros-Mendez, Electroactive phases of poly (vinylidene fluoride): determination, processing and applications. Prog. Polym. Sci. 39, 683–706 (2014)

    Article  CAS  Google Scholar 

  9. H. Djidjelli, D. Benachour, A. Boukerrou, O. Zefouni, J. Martinez-Véga, J. Farenc, M. Kaci, Thermal, dielectric and mechanical study of poly (vinyl chloride)/olive pomace composites. Express Polym. Lett. 1, 846–852 (2007)

    Article  CAS  Google Scholar 

  10. C. Muralidhar, P.K.C. Pillai, Dielectric behaviour of barium titanate BaTiO3/polyvinylidene fluoride (PVDF) composite. J. Mater. Sci. Lett. 6, 346–348 (1987)

    Article  CAS  Google Scholar 

  11. J. Liu, L. Xiaolong, W. Chunrui, Effect of preparation methods on crystallization behavior and tensile strength of poly(vinylidene fluoride) membranes. Membranes 3, 389–405 (2013)

    Article  Google Scholar 

  12. V. Revathii, S.D. Kumar, V. Subramanian, M. Chellamuthu, BMFO-PVDF electrospun fiber based tunable met a material structures for electromagnetic interference shielding in microwave frequency region. Eur. Phys. J. Appl. Phys. 72, 20402 (2015)

    Article  Google Scholar 

  13. P. Thomas, S. Satapathy, K. Dwarakanath, K.B.R. Varma, Dielectric properties of poly(vinylidene fluoride)/CaCu3Ti4O12 nanocrystal composite thick films. Express Polym Lett. 4(10), 632–643 (2010)

    Article  CAS  Google Scholar 

  14. A.K. Zak, W.C. Gan, W.H.A. Majid, M. Darroudi, T.S. Velayutham, Fabrication of PVDF-TrFE based bilayered PbTiO3/PVDF-TrFE films capacitor. Ceram. Int. 37, 1653–1660 (2011)

    Article  CAS  Google Scholar 

  15. S. Satapathy, P.K. Gupta, K.B.R. Varma, Enhancement of nonvolatile polarization and pyroelectric sensitivity in lithium tantalate (LT)/poly(vinylidene fluoride) (PVDF) nanocomposite. J. Phys. D 42, 055402 (2009)

    Article  Google Scholar 

  16. B. Luo, X. Wang, Y. Wang, L. Li, Fabrication, characterization, properties and theoretical analysis of ceramic/PVDF composite flexible films with high dielectric constant and low dielectric loss. J. Mater. Chem. A 2, 500 (2014)

    Article  Google Scholar 

  17. S. Dash, R.N.P. Choudhary, P.R. Das, A. Kumar, Structural, dielectric and multiferroic properties (Bi05K05)(Fe05Nb05)O3. Can. J. Phys. (2014). https://doi.org/10.1139/cjp-2014-0025

    Article  Google Scholar 

  18. L. Xiaochi, W. Bian, B. Quan, Z. Wang, H. Zhu, Q. Zhang, Compositional tailoring effect on ZnGa2O4-TiO2 ceramics for tunable microwave dielectric properties. J. Alloy. Compd. 792, 742–749 (2019)

    Article  Google Scholar 

  19. B. Quan, W. Liu, X. Guoyue, G. Ji, D. Youwei, Nano sulfur particles decorated bi-lamella composites for superior electromagnetic wave absorption. J. Colloid Interface Sci. 543, 138–146 (2019)

    Article  CAS  Google Scholar 

  20. S. Dash, R.N.P. Choudhary, M.N. Goswami, Enhanced dielectric and ferroelectric properties of PVDF-BiFeO3 composites in 0-3 connectivity. J. Alloy. Compd. 715, 29–36 (2017)

    Article  CAS  Google Scholar 

  21. N. Adhlakha, K.L. Yadav, R. Singh, BiFeO3–CoFe2O4–PbTiO3 composites: structural, multiferroic, and optical characteristics. J. Mater. Sci. (2014). https://doi.org/10.1007/s10853-014-8769-z

    Article  Google Scholar 

  22. S. Dash, R.N.P. Choudhary, Effect of Li-Nb Co-doping on structural, dielectric, optical and multiferroic properties of BiFeO3. J. Electron. Mater. 45, 4129–4137 (2016)

    Article  CAS  Google Scholar 

  23. J. Xu, F. Zhang, B. Sun, Y. Du, G. Li, W. Zhang, Enhanced photocatalytic property of Cu doped sodium niobate. Int. J. Photoenergy 2015, Article ID 846121

  24. J.-F. Liu, X.-L. Li, Y.-D. Li, Synthesis and characterization of nanocrystallineniobates. J. Cryst. Growth 247, 419–424 (2003)

    Article  CAS  Google Scholar 

  25. R.G. Kumar, W. Ping, K. Sopiha, Ferroelectric KNbO3 nanofibers: synthesis, characterization and their application as a humidity nanosensor. Nanotechnology 27, 395607 (2016)

    Article  Google Scholar 

  26. Y. Peng, W. Peiyi, Two dimensional infrared correlation spectroscopic studies on the structure changes of PVDF during the melting process. Polymer 45, 5295–5299 (2004)

    Article  CAS  Google Scholar 

  27. P. Thakur, A. Kool, B. Bagchi, S. Das, P. Nandy, Enhancement of β-phase crystallization and dielectric behavior of kaolinite/halloysite modified poly(vinylidene fluoride) thin films. Appl. Clay Sci. 99, 149–159 (2014)

    Article  CAS  Google Scholar 

  28. Y. Bormashenko, R. Pogreb, O. Stanevsky, E. Bormashenko, Vibrational spectrum of PVDF and its interpretation. Polym Test 23, 791 (2004)

    Article  CAS  Google Scholar 

  29. D.-H. Kuo, C.-C. Chang, T.-Y. Su, W.-K. Wang, B.-Y. Lin, Dielectric properties of three ceramic/epoxy composites. Mater. Chem. Phys. 85, 201–206 (2004)

    Article  CAS  Google Scholar 

  30. R.K. Goyal, S.S. Katkade, D.M. Mule, Dielectric, mechanical and thermal properties of polymer/BaTiO3 composites for embedded capacitor. Composites B 44, 128–132 (2013)

    Article  CAS  Google Scholar 

  31. M.T. Sebastian, H. Jantunen, Polymer-ceramic composites of 0–3 connectivity for circuits in electronics: a review. Int. J. Appl. Ceram. Technol. 7(4), 415–434 (2010)

    CAS  Google Scholar 

  32. B. Luo, X. Wang, Y. Wang, L. Li, Fabrication, characterization, properties and theoretical analysis of ceramic/PVDF composite flexible films with high dielectric constant and low dielectric loss. J. Mater. Chem. A 2, 510 (2014)

    Article  CAS  Google Scholar 

  33. M.T. Sebastian, H. Jantunen, Polymer-ceramic composites of 0–3 connectivity for circuits in electronics: a review. Int. J. Appl. Ceram. Technol. 7(4), 415–434 (2010)

    CAS  Google Scholar 

  34. S. Thomas, V.N. Deepu, P. Mohanan, M.T. Sebastian, Effect of filler content on the dielectric properties of PTFE/ZnAl2O4–TiO2 composites. J. Am. Ceram. Soc. 91, 1971–1975 (2008)

    Article  CAS  Google Scholar 

  35. P. Barber, S. Balasubramanian, S.G. YogeshAnguchamy, A. Wibowo, H. Gao, H.J. Ploehn, H.-C. zur Loye, Polymer composite and nano-composite dielectric materials for pulse power energy storage. Materials 2, 1697–1733 (2009). https://doi.org/10.3390/ma2041697

    Article  CAS  Google Scholar 

  36. M.T. Sebastian, H. Jantunen, Polymer-ceramic composites of 0–3 connectivity for circuits in electronics: a review. Int. J. Appl. Ceram. Technol. 7(4), 415–434 (2010)

    CAS  Google Scholar 

  37. P. Thongsanitgarn, A. Watcharapasorn, S. Jiansirisomboon, Electrical and mechanical properties of PZT/PVDF 0–3 composites. Surf. Rev. Lett. 17, 1–7 (2010)

    Article  CAS  Google Scholar 

  38. M.A. Rahman, G.-S. Chung, Synthesis of PVDF-graphene nanocomposites and their properties. J. Alloys Compd. 581, 724–730 (2013)

    Article  Google Scholar 

  39. J.-H.L. Dong-Ho-Lee, D.-W. Kim, B.-K. Kim, H.-J. Je, Enhanced dielectric constant of polymer matrix composites using nano-BaTiO3 agglomerates. J. Ceram. Soc. Jpn. 118, 62–65 (2010)

    Article  Google Scholar 

  40. S.S. Ravikant, G. Gupta, S. Yadav, P.K. Dubey, V.N. Ojha, A. Kumar, Highly-sensitive potassium-tantalum-niobium oxide humidity sensor. Sensors Actuators 295, 133–140 (2019)

    Article  CAS  Google Scholar 

  41. F. Demichelis, E. Minetti-Mezzetti, A. Tagliaferro, E. Tresso, Optical properties of hydrogenated amorphous silicon. J. Appl. Phys. 59, 611 (1986)

    Article  CAS  Google Scholar 

  42. M.E. Sánchez-Vergara, J.C. Alonso-Huitron, A. Rodriguez-Gómez, J.N. Reider-Burstin, Determination of the optical GAP in thin films of amorphous dilithium phthalocyanine using the tauc and cody models. Molecules 17, 10000–10013 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to Dr. ManoranjanKar, IIT Patna for carrying out SEM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swagatika Dash.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dash, S., Choudhary, R.N.P., Kumar, A. et al. Enhanced dielectric properties and theoretical modeling of PVDF–ceramic composites. J Mater Sci: Mater Electron 30, 19309–19318 (2019). https://doi.org/10.1007/s10854-019-02291-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02291-z

Navigation