Skip to main content
Log in

Effect of thermal annealing and cooling rate on CBD grown CdS thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CdS films were deposited by CBD on a glass substrate by using CdI2 as a Cd+ source, thiourea as an S source and NH4OH as the complexing agent. The effect of slow and rapid cooling on the films after thermal annealing was investigated in the present study. X-ray diffraction and Raman spectra of the films suggest that thermal annealing followed by slow cooling gives CdS with enhanced crystallinity and reduced strain and dislocation density as compared to the films where they were cooled rapidly after thermal annealing. The results were supported by scanning electron microscopy and UV–Vis absorption spectroscopy. Hall Effect measurement shows the lowest resistivity and highest mobility obtained in the case of a slowly cooled sample as compared to the rapidly cooled sample. Carrier concentration in the range of about 1011 (cm−3) was found, and all the samples of CdS were of n-type conductivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. J. Britt, C. Ferekides, Appl. Phys. Lett. 62, 2851–2852 (1993)

    Article  CAS  Google Scholar 

  2. D.J. Coyle, H.A. Blaydes, R.S. Northey, J.E. Pickett, K.R. Nagarkar, R. Zhao, J.O. Gardner, Prog. Photovolt. 21(2), 173–186 (2013). https://doi.org/10.1002/pip

    Article  CAS  Google Scholar 

  3. W.J. Jeong, S.K. Kim, G.C. Park, Thin Solid Films 506–507, 180–183 (2006). https://doi.org/10.1016/j.tsf.2005.08.213

    Article  CAS  Google Scholar 

  4. T. Slimani, E. Bachir, F. Cherkaoui, E. Moursli, Energy Proced. 84, 127–133 (2015). https://doi.org/10.1016/j.egypro.2015.12.305

    Article  CAS  Google Scholar 

  5. H. Zhan, J.K. Li, Y.F. Cheng, Optik 126, 1411–1414 (2015). https://doi.org/10.1016/j.ijleo.2014.07.119

    Article  CAS  Google Scholar 

  6. U. Pal, R. Silva-González, G. Martínez-Montes, M. Gracia-Jiménez, M.A. Vidal, S. Torres, Thin Solid Films 305, 345–350 (1997). https://doi.org/10.1016/S0040-6090(97)00124-7

    Article  CAS  Google Scholar 

  7. C.T. Tsai, D.S. Chuu, G.L. Chen, S.L. Yang, J. Appl. Phys. 79, 9105–9109 (1996). https://doi.org/10.1063/1.362645

    Article  CAS  Google Scholar 

  8. J. Hiie, T. Dedova, V. Valdna, K. Muska, Thin Solid Films 511, 443–447 (2006)

    Article  Google Scholar 

  9. B.R. Sankapal, R.S. Mane, C.D. Lokhande, Mater. Res. Bull. 35, 177–184 (2000). https://doi.org/10.1016/S0025-5408(00)00210-5

    Article  CAS  Google Scholar 

  10. W. Yang, Z. Wu, Z. Lu, X. Yang, L. Song, Microelectron. Eng. 83, 1971–1974 (2006). https://doi.org/10.1016/j.mee.2006.02.002

    Article  CAS  Google Scholar 

  11. Z. Rizwan, A. Zakaria, M.S.M. Ghazali, A. Jafari, F. Ud Din, R. Zamiri, Int. J. Mol. Sci. 12, 1293–1305 (2011). https://doi.org/10.3390/ijms12021293

    Article  CAS  Google Scholar 

  12. J.R. Mann, N. Vora, I.L. Repins, Sol. Energy Mater. Sol. Cells 94, 333–337 (2010). https://doi.org/10.1016/j.solmat.2009.10.009

    Article  CAS  Google Scholar 

  13. A.S.R. Chesman, N.W. Duffy, A. Martucci, L. De Oliveira Tozi, T.B. Singh, J.J. Jasieniak, J. Mater. Chem. C 2, 3247–3253 (2014). https://doi.org/10.1039/c3tc32189d

    Article  CAS  Google Scholar 

  14. H. Jun-Feng, F. Gan-Hua, V. Krishnakumar, L. Cheng, W. Jaegermann, J. Mater. Sci.: Mater. Electron. 24, 2695–2700 (2013). https://doi.org/10.1007/s10854-013-1157-7

    Article  CAS  Google Scholar 

  15. N. Maticiuc, M. Kukk, N. Spalatu, T. Potlog, M. Krunks, V. Valdna, J. Hiie, Energy Proced. 44, 77–84 (2014). https://doi.org/10.1016/j.egypro.2013.12.012

    Article  CAS  Google Scholar 

  16. R.R. Prabhu, M.A. Khadar, Bull. Mater. Sci. 31(3), 511–515 (2008)

    Article  CAS  Google Scholar 

  17. V.P. Nandakumar, C. Vijayan, M. Rajalakshmi, A.K. Arora, Y.V.G.S. Murti, Physica E 11, 377–383 (2001). https://doi.org/10.1016/S1386-9477(01)00157-6

    Article  CAS  Google Scholar 

  18. H. Metin, R. Esen, J. Cryst. Growth 258, 141–148 (2003). https://doi.org/10.1016/S0022-0248(03)01518-5

    Article  CAS  Google Scholar 

  19. F. Liu, Y. Lai, J. Liu, B. Wang, S. Kuang, Z. Zhang, J. Li, Y. Liu, J. Alloys Compd. 493, 305–308 (2010). https://doi.org/10.1016/j.jallcom.2009.12.088

    Article  CAS  Google Scholar 

  20. H. Khallaf, I.O. Oladeji, G. Chai, L. Chow, Thin Solid Films 516, 7306–7312 (2008). https://doi.org/10.1016/j.tsf.2008.01.004

    Article  CAS  Google Scholar 

  21. A. Abdolahzadeh Ziabari, F.E. Ghodsi, Sol. Energy Mater. Sol. Cells 105, 249–262 (2012). https://doi.org/10.1016/j.solmat.2012.05.014

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay S. Ghosh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 200 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaikh, R.A.G., More, S.A., Bisen, G.G. et al. Effect of thermal annealing and cooling rate on CBD grown CdS thin films. J Mater Sci: Mater Electron 30, 20354–20359 (2019). https://doi.org/10.1007/s10854-019-02238-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02238-4

Navigation