Skip to main content
Log in

Structural, AC conductivity, conduction mechanism and dielectric properties of La0.62Eu0.05Ba0.33Mn0.85Fe0.15O3 ceramic compound

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The new perovskite compound La0.62Eu0.05Ba0.33Mn0.85Fe0.15O3 was successfully synthesized via the sol–gel process. X-ray diffraction revealed that our sample is pure and crystallizes in the orthorhombic structure with Pbnm space group. Electrical properties were performed using the complex impedance spectroscopy technique in the range of frequency (40–10 MHz) and at various temperatures (80–400 K). AC-conductivity results are well described by the universal Jonsher’s power law at low temperatures and the DC-conductivity data are well fitted by the small polaron hopping model at high temperatures. Impedance results show a negative temperature coefficient of resistance (NTCR) which discloses the semiconductor behaviour of the studied sample. Nyquist plots were well fitted by an equivalent circuit involving the contribution of grain and grain boundaries in the conduction process. Giant dielectric values, useful in electronic devices, were obtained. Moreover, a relaxation diffuse phase transition is attributed to a strong heterogeneity in A and B sites of the studied perovskite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. R. Rozilah, N. Ibrahim, A.K. Yahya, Inducement of ferromagnetic–metallic phase and magnetoresistance behavior in charged ordered monovalent-doped Pr0.75Na0.25MnO3 manganite by Ni substitution. Solid State Sci. 87, 64–80 (2019)

    Article  CAS  Google Scholar 

  2. A. Ben Jazia Kharrat, M. Bourouina, N. Chniba-Boudjada, W. Boujelben, Critical behaviour of Pr0.5−xGdxSr0.5MnO3 (0 ≤ x≤0.1) manganite compounds: correlation between experimental and theoretical considerations. Solid State Sci. 87, 27–38 (2019)

    Article  CAS  Google Scholar 

  3. V. Gupta, B. Raina, K.K. Bamzai, Preparation, structural, spectroscopic and magneto-electric properties of multiferroic cadmium doped neodymium manganite. J. Mater. Sci.: Mater. Electron. 29, 8947–8957 (2018)

    CAS  Google Scholar 

  4. H.E. Sekrafi, A. Ben Jazia Kharrat, N. Chniba-Boudjada, W. Boujelben, Effect of Ti hsubstitution on the critical behavior around the paramagnetic-ferromagnetic phase transition of Pr0.75Bi0.05Sr0.1Ba0.1Mn1−xTixO3 (x = 0, 0.02 and 0.04) perovskite compounds. J. Alloys Compd. 790, 27–35 (2019)

    Article  CAS  Google Scholar 

  5. Z. Joshi, D. Dhruv, K.N. Rathod, H. Boricha, K. Gadani, D.D. Pandya, A.D. Joshi, P.S. Solanki, N.A. Shah, Low field magnetoelectric studies on sol–gel grown nanostructured YMnO3 manganites. Prog. Solid State Chem. 49, 23–36 (2018)

    Article  CAS  Google Scholar 

  6. A. Swain, P.S. Anil Kumar, V. Gorige, Electrical conduction mechanism for the investigation of charge ordering in Pr0.5Ca0.5MnO3 manganite system. J. Magn. Magn. Mater. 485, 358–368 (2019)

    Article  CAS  Google Scholar 

  7. A. Ben Jazia Kharrat, E.K. Hlil, W. Boujelben, Tuning the magnetic and magnetotransport properties of Pr0.8Sr0.2MnO3 manganites through Bi-doping. Mater. Res. Express 5, 126107 (2018)

    Article  CAS  Google Scholar 

  8. A. Ben Jazia Kharrat, E.K. Hlil, W. Boujelben, Bi doping effect on the critical behavior and magnetocaloric effect of Pr0.8-xBixSr0.2MnO3 (x = 0,0.05 and 0.1). J. Alloys. Compd. 739, 101–113 (2018)

    Article  CAS  Google Scholar 

  9. K. Das, P. Sen, Magnetic and magnetocaloric properties of polycrystalline Pr0.55(Ca0.75Sr0.25)0.45MnO3 compound: observation of large inverse magnetocaloric effect. J. Magn. Magn. Mater. 485, 224–227 (2019)

    Article  CAS  Google Scholar 

  10. S. Banik, I. Das, Effect of A-site ionic disorder on magnetocaloric properties in large band width manganite systems. J. Alloys Compd. 742, 248–255 (2018)

    Article  CAS  Google Scholar 

  11. C. Zener, Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82, 403 (1951)

    Article  CAS  Google Scholar 

  12. F. Ben Jemaa, S.H. Mahmood, M. Ellouze, E.K. Hlil, F. Halouani, Structural, magnetic, magnetocaloric, and critical behavior of selected Ti-doped manganites. Ceram. Int. 41, 8191–8202 (2015)

    Article  CAS  Google Scholar 

  13. M. Oumezzine, O. Pena, T. Guizouarn, R. Lebullenger, M. Oumezzine, Impact of the sintering temperature on the structural, magnetic and electrical transport properties of doped La0.67Ba0.33Mn0.9Cr0.1O3 manganite. J. Magn. Magn. Mater. 324, 2821–2828 (2012)

    Article  CAS  Google Scholar 

  14. W. Boujelben, M. Ellouze, A. Cheikh-Rouhou, R. Madar, H. Fuess, Effect of Fe doping on the structural and magneto transport properties in Pr0.67Sr0.33MnO3 perovskite manganese. Phys. Stat. Sol. (a) 201, 1410 (2004)

    Article  CAS  Google Scholar 

  15. A. Ammar, S. Zouari, A. Cheikhrouhou, Fe doping effects on the structural and magnetic properties Pr0.5Sr0.5Mn1−xFexO3 with 0 ≤ x≤0.3. Phys. Stat. Sol. (c) 1, 1645–1648 (2004)

    Article  CAS  Google Scholar 

  16. K. Snini, F. Ben Jemaa, M. Ellouze, E.K. Hlil, Structural, magnetic and magnetocaloric investigations in Pr0.67Ba0.22Sr0.11Mn1−xFexO3 (0 ≤ x≤0.15) manganite oxide. J. Alloys Compd. 739, 948–954 (2018)

    Article  CAS  Google Scholar 

  17. C. Silveira, M.E. Lopes, M.R. Nunes, M.E. Melo Jorge, Synthesis and electrical properties of nanocrystalline Ca1−xEuxMnO3±δ (0.1 ≤ x≤0.4) powders prepared at low temperature using citrate gel method. Solid State Ion. 180, 1702–1709 (2010)

    Article  CAS  Google Scholar 

  18. R. M’nassri, W. Cheikhrouhou-Koubaa, M. Koubaa, N. Chniba-Boudjada, A. Cheikhrouhou, Magnetic and magnetocaloric properties of Pr0.6−xEuxSr0.4MnO3 manganese oxides. J. Solid State Commun. 151, 1579–1582 (2011)

    Article  CAS  Google Scholar 

  19. W. Ncib, A. Ben Jazia Kharrat, M.A. Wederni, N. Chniba-Boudjada, K. Khirouni, W. Boujelben, Investigation of structural, electrical and dielectric properties of sol-gel prepared La0.67−xEuxBa0.33Mn0.85Fe0.15O3 (x = 0.0, 0.1) manganites. J. Alloys Compd. 768, 249–262 (2018)

    Article  CAS  Google Scholar 

  20. J. Rodriguez-Carvajal, Phys. B 192, 55 (1993)

    Article  CAS  Google Scholar 

  21. H.E. Sekrafi, A. Ben Jazia Kharrat, M.A. Wederni, N. Chniba-Boudjada, K. Khirouni, W. Boujelben, Impact of low titanium concentration on the structural, electrical and dielectric properties of Pr0.75Bi0.05Sr0.1Ba0.1Mn1−xTixO3 (x = 0,0.04) compounds. J. Mater. Sci.: Mater. Electron. 30, 876 (2019)

    CAS  Google Scholar 

  22. H.E. Sekrafi, A. Ben Jazia Kharrat, M.A. Wederni, K. Khirouni, N. Chniba-Boudjada, W. Boujelben, Structural, electrical, dielectric properties and conduction mechanism of sol gel prepared Pr0.75Bi0.05Sr0.1Ba0.1Mn0.98Ti0.02O3 compound. Mater. Res. Bull. 111, 329–337 (2019)

    Article  CAS  Google Scholar 

  23. V.M. Goldschmidt, Geochemische Verteilungs gesetze de l’Elementen VII, VIII (1927/1928)

  24. J.M.D. Coey, M. Viret, S. Von Molnr, Mixed-valence manganites. Adv. Phys. 48, 167–293 (1999)

    Article  CAS  Google Scholar 

  25. R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A 32, 751–767 (1976)

    Article  Google Scholar 

  26. H. Ghoudi, S. Chkoundali, Z. Raddaoui, A. Aydi, Structure properties and dielectric relaxation of Ca0.1Na0.9Ti0.1Nb0.9O3 ceramic. RSC Adv. 9, 25358–25367 (2019)

    Article  CAS  Google Scholar 

  27. A. Guinier, in: Theorie et Technique de la Radiocristallographie, ed. by X. Dunod, 3rd edn (Dunod, Paris, 1964) 482

  28. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22 (1953)

    Article  CAS  Google Scholar 

  29. Ch. Rayssi, SEl Kossi, J. Dhahri, K. Khirouni, Colossal dielectric constant and non-debye type relaxor in Ca0.85Er0.1Ti1−xCo4x/3O3 (x = 0.15 and 0.2) ceramic. J. Alloys Compd. 759, 93–99 (2018)

    Article  CAS  Google Scholar 

  30. R.N. Bhowmik, Dielectric and magnetic study of BaTi0.5Mn0.5O3 ceramics, synthesized by solid state sintering, mechanical alloying and chemical routes. Ceram. Inter. 38, 5069–5080 (2012)

    Article  CAS  Google Scholar 

  31. A. Ben Jazia Kharrat, M. Bourouina, N. Moutia, K. Khirouni, W. Boujelben, Gd doping effect on impedance spectroscopy properties of sol-gel prepared Pr0.5-xGdxSr0.5MnO3 (0 ≤ x ≤ 0.3) perovskites. J. Alloys Compd. 741, 723–733 (2018)

    Article  CAS  Google Scholar 

  32. M. Chebaane, N. Talbi, A. Dhahri, M. Oumezzine, K. Khirouni, Structural and impedance spectroscopy properties of La0.8Ba0.1Ca0.1Mn1−xRuxO3 perovskites. J. Magn. Magn. Mater. 426, 646–653 (2017)

    Article  CAS  Google Scholar 

  33. H. Rahmouni, B. Cherif, R. Jemai, A. Dhahri, K. Khirouni, Europium substitution for lanthanium in LaBaMnO—the structural and electrical properties of La0.7−xEuxBa0.3MnO3 perovskite. J. Alloys Compd. 690, 890–895 (2017)

    Article  CAS  Google Scholar 

  34. A. Ben Jazia Kharrat, S. Moussa, N. Moutiaa, K. Khirouni, W. Boujelben, Structural, electrical and dielectric properties of Bi-doped Pr0.8−xBixSr0.2MnO3 manganite oxides prepared by sol-gel process. J. Alloys Compd. 724, 389–399 (2017)

    Article  CAS  Google Scholar 

  35. H.Y. Huang, S.-W. Cheong, P.G. Radaelli, M. Marezio, B. Batlogg, Phys. Rev. Lett. 75, 914 (1995)

    Article  Google Scholar 

  36. N.F. Mott, E.A. Davis, Electronic Process in Non-Crystalline Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  37. B. Ellis, J.P. Doumerc, P. Dordor, M. Pouchard, P. Hagenmuller, Conduction mechanism in polycrystalline Na1−xSrxNbO3 niobium bronzes. Solid State Commun. 51, 913–917 (1984)

    Article  CAS  Google Scholar 

  38. R.N. Bhowmik, A.G. Lone, Dielectric properties of α-Fe1.6Ga0.4O3 oxide: a promising magnetoelectric material. J. Alloys Compd. 680, 31–42 (2016)

    Article  CAS  Google Scholar 

  39. K. Funke, Prog. J. Solid State Chem. 22, 111 (1993)

    Article  CAS  Google Scholar 

  40. A.N. Papathanassiou, On the power-law behavior of the AC conductivity of the mixed crystal (NH4)3H(SO4)1.42(SeO4)0.58. J. Phys. Chem. Solids 66, 1849–1850 (2005)

    Article  CAS  Google Scholar 

  41. S.R. Elliott, A.c. conduction in amorphous chalcogenide and pnictide semiconductors. Adv. Phys. 36, 135–217 (1987)

    Article  CAS  Google Scholar 

  42. Lily, K. Kumari, K. Prasad, R.N.P. Choudhary, Impedance spectroscopy of (Na0.5Bi0.5)(Zr0.25Ti0.75)O3 lead-free ceramic, J Alloys Compd. 453, 325–331 (2008)

  43. A. Ghosh, A. Pan, Scaling of the conductivity spectra in ionic glasses: dependence on the structure. Phys. Rev. Lett. 84, 2188 (2000)

    Article  CAS  Google Scholar 

  44. R.N. Bhowmik, G. Vijayasri, Study of microstructure and semiconductor to metallic conductivity transition in solid state sintered Li0.5Mn0.5Fe2O4-δ spinel ferrite. J. Appl. Phys. 114, 223701 (2013)

    Article  CAS  Google Scholar 

  45. A. Ben Jazia Kharrat, K. Khirouni, W. Boujelben, Structural, magnetic, magnetocaloric and impedance spectroscopy analysis of Pr0.8Sr0.2MnO3 manganite prepared by modified solid-state route. Phys. Lett. A 382, 3435 (2018)

    Article  CAS  Google Scholar 

  46. M.R. Shah, A.K.M. Akther Hossain, Structural, dielectric and complex impedance spectroscopy studies of lead free Ca0.5+xNd0.5−x(Ti0.5Fe0.5)O3. J. Mater. Sci. Technol. 29, 323–329 (2013)

    Article  CAS  Google Scholar 

  47. J. Shanker, G. Narsinga Rao, K. Venkataramana, D. Suresh Babu, Investigation of structural and electrical properties of NdFeO3 perovskite nanocrystalline. Phys. Lett. A 40, 2974–2977 (2018)

    Article  CAS  Google Scholar 

  48. A. Ben Jazia Kharrat, N. Moutia, K. Khirouni, W. Boujelben, Investigation of electrical behavior and dielectric properties in polycrystalline Pr0.8Sr0.2MnO3 manganite perovskite. Mater. Res. Bull. 105, 75–83 (2018)

    Article  CAS  Google Scholar 

  49. Z. Raddaoui, R. Lahouli, S.E.L. Kossi, J. Dhahri, K. Khirouni, K. Taibi, Effect of oxygen vacancies on dielectric properties of Ba(1−x)Nd(2x/3)TiO3 compounds. J. Alloys Compd. 771, 67–78 (2018)

    Article  CAS  Google Scholar 

  50. A. Dhahri, S. Hcini, A. Omri, L. Bouazizi, Effect of 20% Cr-doping on structural and electrical properties of La0.67Ca0.33MnO3 perovskite. J. Alloys Compd. 687, 521–528 (2016)

    Article  CAS  Google Scholar 

  51. P.S. Sahoo, A. Panigrahi, S.K. Patri, R.N.P. Choudhary, Structural and impedance properties of Ba5DyTi3V7O30. J. Mater. Sci.: Mater. Electron. 20, 565–570 (2009)

    CAS  Google Scholar 

  52. J. Shanker, K. Venkataramana, B. Vittal-Prasad, R. Vijaya Kumar, D. Suresh Babu, Influence of Fe substitution on structural and electrical properties of Gd orthochromite ceramics. J. Alloys Compd. 732, 314–327 (2018)

    Article  CAS  Google Scholar 

  53. N.F. Mott, E.A. Davis, Electronic Processes in Non Crystalline Materials (Clarendon Press, Oxford, 1979)

    Google Scholar 

  54. A.K. Jonscher, The interpretation of non-ideal dielectric admittance and impedance diagrams. Phys. Status Solidi (a) 32, 665–676 (1975)

    Article  CAS  Google Scholar 

  55. M.J. Verkerk, B.J. Middelhuis, A.J. Burggraaf, Effect of grain boundaries on the conductivity of high-purity ZrO2-Y2O3 ceramics. Solid State Ion. 6, 159–170 (1982)

    Article  CAS  Google Scholar 

  56. D.E. Yıldız, I. Dökme, Frequency and gate voltage effects on the dielectric properties and electrical conductivity of Al/SiO2/p-Si metal-insulator-semiconductor Schottky diodes. J. Appl. Phys. 110, 014507 (2011)

    Article  CAS  Google Scholar 

  57. A. Zaafouri, M. Megdiche, M. Gargouri, AC conductivity and dielectric behavior in lithium and sodium diphosphate LiNa3P2O7. J. Alloys Compd. 584, 152–158 (2014)

    Article  CAS  Google Scholar 

  58. J.C. Giuntini, J.V. Zanchetta, D. Jullien, R. Eholie, P.J. Houenou, Temperature dependence of dielectric losses in chalcogenide glasses. J. Non-Cryst. Solids 45, 57–62 (1981)

    Article  CAS  Google Scholar 

  59. A. Daidouh, M.L. Veiga, C. Pico, Structure determination of the new layered compound Cs2TiP2O8 and ionic conductivity of Cs2MP2O8 (M = Ti, V). Solid State Ion. 104, 285–294 (1997)

    Article  CAS  Google Scholar 

  60. K. Uchino, S. Nomura, Critical exponents of the dielectric constants in diffused-phase-transition crystals. Ferroelectr. Lett. 44, 55–61 (1982)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work has been supported by the Tunisian Ministry of Higher Education and Scientific Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Ben Jazia Kharrat.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ncib, W., Ben Jazia Kharrat, A., Saadi, M. et al. Structural, AC conductivity, conduction mechanism and dielectric properties of La0.62Eu0.05Ba0.33Mn0.85Fe0.15O3 ceramic compound. J Mater Sci: Mater Electron 30, 18391–18404 (2019). https://doi.org/10.1007/s10854-019-02193-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02193-0

Navigation