Skip to main content
Log in

Electromagnetic and microwave absorption properties of coatings based on spherical and flaky carbonyl iron

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Single-layer and double-layer polyurethane (PU) matrix coatings containing spherical carbonyl iron (SCI) and flaky carbonyl iron (FCI) were designed and prepared by using a simple and effective manufacturing method, and the thickness of the coatings was kept at 1.5 mm. The complex permittivity, complex permeability and absorption properties of the coatings were investigated in the frequency range of 2–18 GHz. The results indicate that all the single-layer and double-layer coatings exhibit excellent absorption properties and wide absorption bands. By optimizing the filler radio and coating structure, the optimal reflection loss (RL) value can reach − 35 dB at 8.6 GHz and make the widest absorption band reach 15.5 GHz (2.5–18.0 GHz) and 4.9 GHz (10.7–15.6 GHz) for RL < − 5 dB and RL < − 10 dB, respectively. The coatings of SCI/FCI/PU exhibit a broad effective absorption bandwidth, which can be effectively applied to radar signature reduction and electromagnetic interference suppression in military and civil fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The raw/processed data required to reproduce these findings cannot be shared at this time as the data also forms part of an ongoing study.

References

  1. Z. An, S. Pan, J. Zhang, Facile preparation and electromagnetic properties of core–shell composite spheres composed of aloe-like nickel flowers assembled on hollow glass spheres. J. Phys. Chem. C 113, 2715–2721 (2009)

    CAS  Google Scholar 

  2. M. Cao, R. Qin, C. Qiu, J. Zhu, Matching design and mismatching analysis towards radar absorbing coatings based on conducting plate. Mater. Des. 24, 391–396 (2003)

    Google Scholar 

  3. R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of fe encapsulated within carbon nanotubes. Adv. Mater. 16, 401–405 (2004)

    CAS  Google Scholar 

  4. S.S. Kim, S.T. Kim, Y.C. Yoon, K.S. Lee, Magnetic, dielectric, and microwave absorbing properties of iron particles dispersed in rubber matrix in gigahertz frequencies. J. Appl. Phys. 97, 10F905 (2005)

    Google Scholar 

  5. J. Zhou, J. He, G. Li et al., Direct incorporation of magnetic constituents within ordered mesoporous carbon–silica nanocomposites for highly efficient electromagnetic wave absorbers. J. Phys. Chem. C 114, 7611–7617 (2010)

    CAS  Google Scholar 

  6. T. Giannakopoulou, A. Oikonomou, G. Kordas, Double-layer microwave absorbers based on materials with large magnetic and dielectric losses. J. Magn. Magn. Mater. 271, 224–229 (2004)

    CAS  Google Scholar 

  7. M. Wang, Y. Duan, S. Liu, X. Li, Z. Ji, Absorption properties of carbonyl-iron/carbon black double-layer microwave absorbers. J. Magn. Magn. Mater. 321, 3442–3446 (2009)

    CAS  Google Scholar 

  8. R.B. Yang, W.F. Liang, Microwave properties of high-aspect-ratio carbonyl iron/epoxy absorbers. J. Appl. Phys. 109, 178 (2011)

    Google Scholar 

  9. L. He, Z. Yan, L. Xing, P. Liu, Y. Du, Preparation of reduced graphene oxide coated flaky carbonyl iron composites and their excellent microwave absorption properties. RSC Adv. 8, 2971–2977 (2018)

    CAS  Google Scholar 

  10. M.S. Kim, E.H. Min, J.G. Koh, Comparison of the effects of particle shape on thin FeSiCr electromagnetic wave absorber. J. Magn. Magn. Mater. 321, 581–585 (2009)

    CAS  Google Scholar 

  11. Y. Fan, H. Yang, M. Li, G. Zou, Evaluation of the microwave absorption property of flake graphite. Mater. Chem. Phys. 115, 696–698 (2009)

    CAS  Google Scholar 

  12. Y. Yang, B. Zhang, W. Xu et al., Preparation and properties of a novel iron-coated carbon fiber. J. Magn. Magn. Mater. 256, 129–132 (2003)

    CAS  Google Scholar 

  13. Y. Zhang, H. Li, X. Yang et al., Additive manufacturing of carbon nanotube-photopolymer composite radar absorbing materials. Polym. Compos. 39, 671–676 (2016)

    Google Scholar 

  14. Y. Duan, Y. Liu, Y. Cui, G. Ma, W. Tongmin, Graphene to tune microwave absorption frequencies and enhance absorption properties of carbonyl iron/polyurethane coating. Prog. Org. Coat. 125, 89–98 (2018)

    CAS  Google Scholar 

  15. S.M. Abbas, M. Chandra, A. Verma, R. Chatterjee, T.C. Goel, Complex permittivity and microwave absorption properties of a composite dielectric absorber. Composite A 37, 2148–2154 (2006)

    Google Scholar 

  16. L. Jing, G. Wang, Y. Duan, Y. Jiang, Synthesis and electromagnetic characteristics of the flake-shaped barium titanate powder. J. Alloys Compd. 475, 862–868 (2009)

    CAS  Google Scholar 

  17. H.C. Pant, M.K. Patra, A. Verma, S.R. Vadera, N. Kumar, Study of the dielectric properties of barium titanate–polymer composites. Acta Mater. 54, 3163–3169 (2006)

    CAS  Google Scholar 

  18. P. Saini, V. Choudhary, B.P. Singh, R.B. Mathur, S.K. Dhawan, Polyaniline–MWCNT nanocomposites for microwave absorption and EMI shielding. Mater. Chem. Phys. 113, 919–926 (2009)

    CAS  Google Scholar 

  19. V.T. Truong, S.Z. Riddell, R.F. Muscat, Polypyrrole based microwave absorbers. J. Mater. Sci. 33, 4971–4976 (1998)

    CAS  Google Scholar 

  20. P. Bhattacharya, C.K. Das, In situ synthesis and Characterization of CuFe10Al2O19/MWCNT Nanocomposites for supercapacitor and microwave-absorbing applications. Ind. Eng. Chem. Res. 52, 9594–9606 (2013)

    CAS  Google Scholar 

  21. Q. Ding, M. Zhang, C. Zhang, T. Qian, Synthesis and absorbing mechanism of two-layer microwave absorbers containing polycrystalline iron fibers and carbonyl iron. J. Magn. Magn. Mater. 331, 77–81 (2013)

    CAS  Google Scholar 

  22. M.R. Meshram, N.K. Agrawal, B. Sinha, P.S. Misra, Characterization of M-type barium hexagonal ferrite-based wide band microwave absorber. J. Magn. Magn. Mater. 271, 207–214 (2004)

    CAS  Google Scholar 

  23. M. Najim, G. Modi, Y.K. Mishra, R. Adelung, D. Singh, V. Agarwala, Ultra-wide bandwidth with enhanced microwave absorption of electroless Ni-P coated tetrapod-shaped ZnO nano- and microstructures. Phys. Chem. Chem. Phys. 17, 22923–22933 (2015)

    CAS  Google Scholar 

  24. Y. Qing, W. Zhou, F. Luo, D. Zhu, Microwave-absorbing and mechanical properties of carbonyl-iron/epoxy-silicone resin coatings. Mater. Rev. 321, 25–28 (2009)

    CAS  Google Scholar 

  25. J. Zhao, H. Zhang, X. Ou, Tailoring the shape and size of Fe3O4 nanocrystals by oxidation–precipitation processes for microwave absorption enhancement. J. Mater. Sci. 30, 4943–4952 (2019)

    CAS  Google Scholar 

  26. J. He, W. Wei, J. Guan, Internal strain dependence of complex permeability of ball milled carbonyl iron powders in 2–18 GHz. J. Appl. Phys. 111, 093924 (2012)

    Google Scholar 

  27. W. Wei, J. Guo, L. Chang, L. Wei, J. Guan, Flaky carbonyl iron particles with both small grain size and low internal strain for broadband microwave absorption. J. Alloys Compd. 637, 106–111 (2015)

    Google Scholar 

  28. P. Liu, L. Li, Z. Yao, J. Zhou, M. Du, T. Yao, Synthesis and excellent microwave absorption property of polyaniline nanorods coated Li 0.435 Zn 0.195 Fe 2.37 O 4 nanocomposites. J. Mater. Sci. 27, 7776–7787 (2016)

    CAS  Google Scholar 

  29. G.S. Wang, Y.Y. Wu, X.J. Zhang, Y. Li, L. Guo, M.S. Cao, Controllable synthesis of uniform ZnO nanorods and their enhanced dielectric and absorption properties. J. Mater. Chem. A 2, 8644–8651 (2014)

    CAS  Google Scholar 

  30. H. Yang, M. Cao, Y. Li et al., Enhanced dielectric properties and excellent microwave absorption of SiC powders driven with NiO nanorings. Adv. Opt. Mater. 2, 214–219 (2014)

    Google Scholar 

  31. M. Zhou, X. Zhang, J. Wei, S. Zhao, L. Wang, B. Feng, Morphology-controlled synthesis and novel microwave absorption properties of hollow Urchinlike α-MnO2 nanostructures. J. Phys. Chem. C 115, 1398–1402 (2011)

    CAS  Google Scholar 

  32. C.L. Zhu, M.L. Zhang, Y.J. Qiao, G. Xiao, F. Zhang, Y.J. Chen, Fe3O4/TiO2 Core/shell nanotubes: synthesis and magnetic and electromagnetic wave absorption characteristics. J. Phys. Chem. C 114, 16229–16235 (2010)

    CAS  Google Scholar 

  33. E. Açıkalın, K. Çoban, A. Sayıntı, Nanosized hybrid electromagnetic wave absorbing coatings. Prog. Org. Coat. 98, 2–5 (2016)

    Google Scholar 

  34. A. Ansari, M.J. Akhtar, Investigation on electromagnetic characteristics, microwave absorption, thermal and mechanical properties of ferromagnetic cobalt–polystyrene composites in the X-band (8.4–12.4 GHz). RSC Adv. 6, 13846–13857 (2016)

    CAS  Google Scholar 

  35. X.D. Guo, X.J. Qiao, Q.G. Ren, X. Wan, W.C. Li, Z.G. Sun, Synthesis and microwave-absorbing properties of Co 3 Fe 7 @C core–shell nanostructure. Appl. Phys. A 120, 1–10 (2015)

    Google Scholar 

  36. T. Thomas, B.P. Kanoth, C.M. Nijas et al., Preparation and characterization of flexible ferromagnetic nanocomposites for microwave applications. Mater. Sci. Eng., B 200, 40–49 (2015)

    CAS  Google Scholar 

  37. B. Wang, J. Zhang, T. Wang, L. Qiao, F. Li, Synthesis and enhanced microwave absorption properties of Ni@Ni2O3 core–shell particles. J. Alloys Compd. 567, 21–25 (2013)

    CAS  Google Scholar 

  38. G. Wang, Y. Chang, L. Wang, C. Liu, Synthesis, characterization and microwave absorption properties of Fe3O4/Co core/shell-type nanoparticles. Adv. Powder Technol. 23, 861–865 (2012)

    CAS  Google Scholar 

  39. J. Zeng, L. Tian, J. Xue, F. Lan, Wide-frequency microwave absorption properties of CuO/Ag/carbon sphere composites. J. Alloys Compd. 647, 768–770 (2015)

    CAS  Google Scholar 

  40. M.A. Abshinova, A.V. Lopatin, N.E. Kazantseva, J. Vilčáková, P. Sáha, Correlation between the microstructure and the electromagnetic properties of carbonyl iron filled polymer composites. Composite A 38, 2471–2485 (2007)

    Google Scholar 

  41. F. Wen, W. Zuo, H. Yi, N. Wang, L. Qiao, F. Li, Microwave-absorbing properties of shape-optimized carbonyl iron particles with maximum microwave permeability. Physica B 404, 3567–3570 (2009)

    CAS  Google Scholar 

  42. B. Zhang, Y. Feng, J. Xiong, Y. Yang, H. Lu, Microwave-absorbing properties of de-aggregated flake-shaped carbonyl-iron particle composites at 2-18 GHz. IEEE Trans. Magn. 42, 1778–1781 (2006)

    CAS  Google Scholar 

  43. M. Cao, B. Wang, Q. Li et al., Towards an intelligent CAD system for multilayer electromagnetic absorber design. Mater. Des. 19, 113–120 (1998)

    Google Scholar 

  44. Y. Duan, Y. Yang, M. He, S. Liu, X. Cui, H. Chen, Absorbing properties of α-manganese dioxide/carbon black double-layer composites. J. Phys. D 41, 1854–1862 (2008)

    Google Scholar 

  45. Y. Li, C. Chen, X. Pan et al., Multiband microwave absorption films based on defective multiwalled carbon nanotubes added carbonyl iron/acrylic resin. Phys. B 404, 1343–1346 (2009)

    CAS  Google Scholar 

  46. Y. Qing, D. Min, Y. Zhou, F. Luo, W. Zhou, Graphene nanosheet- and flake carbonyl iron particle-filled epoxy–silicone composites as thin–thickness and wide-bandwidth microwave absorber. Carbon 86, 98–107 (2015)

    CAS  Google Scholar 

  47. J.R. Liu, M. Itoh, T. Horikawa, M. Itakura, N. Kuwano, K. Machida, Complex permittivity, permeability and electromagnetic wave absorption of agr-Fe/C(amorphous) and Fe2B/C(amorphous) nanocomposites. J. Phys. D 37, 2737–2741 (2004)

    CAS  Google Scholar 

  48. S. Ramo, J.R. Whinnery, T. Van Duzer, Fields and Waves in Communication Electronics (Wiley, New York, 1994), pp. 238–241

    Google Scholar 

  49. B.Y. Feng, T. Qiu, Y.C. Shen, Absorbing properties and structural design of microwave absorbers based on carbonyl iron and barium ferrite. J. Magn. Magn. Mater. 318, 8–13 (2007)

    CAS  Google Scholar 

  50. R.G. Yang, Electromagnetic properties and microwave absorption properties of BaTiO3—carbonyl iron composite in S and C bands. J. Magn. Magn. Mater. 323, 1805–1810 (2011)

    CAS  Google Scholar 

  51. L. Chen, Y. Duan, L. Liu, J. Guo, S. Liu, Influence of SiO fillers on microwave absorption properties of carbonyl iron/carbon black double-layer coatings. Mater. Des. 32, 570–574 (2011)

    CAS  Google Scholar 

  52. T. Maeda, S. Sugimoto, T. Kagotani, N. Tezuka, K. Inomata, Effect of the soft/hard exchange interaction on natural resonance frequency and electromagnetic wave absorption of the rare earth–iron–boron compounds. J. Magn. Magn. Mater. 281, 195–205 (2004)

    CAS  Google Scholar 

  53. Y.J. Chen, P. Gao, R.X. Wang et al., Porous Fe3O4/SnO2 core/shell nanorods: synthesis and electromagnetic properties. J. Phys. Chem. C 115, 10061–10064 (2009)

    Google Scholar 

  54. W. Lei, H. Ying, S. Xu et al., Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures. Nanoscale 6, 3157–3164 (2014)

    Google Scholar 

  55. Y.C. Qing, W.C. Zhou, S. Jia, F. Luo, D.M. Zhu, Electromagnetic and microwave absorption properties of carbonyl iron and carbon fiber filled epoxy/silicone resin coatings. Appl. Phys. A 100, 1177–1181 (2010)

    CAS  Google Scholar 

  56. Y. Qing, W. Zhou, S. Huang, Z. Huang, F. Luo, D. Zhu, Evolution of double magnetic resonance behavior and electromagnetic properties of flake carbonyl iron and multi-walled carbon nanotubes filled epoxy-silicone. J. Alloys Compd. 583, 471–475 (2014)

    CAS  Google Scholar 

  57. Y. Qing, W. Zhou, F. Luo, D. Zhu, Epoxy-silicone filled with multi-walled carbon nanotubes and carbonyl iron particles as a microwave absorber. Carbon 48, 4074–4080 (2010)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (No. 2017YFB0307600) and the National Science Foundation of China (Nos. 91860204; U1837205; U1663226).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guojia Ma or Xigao Jian.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pan, Y., Ma, G., Liu, X. et al. Electromagnetic and microwave absorption properties of coatings based on spherical and flaky carbonyl iron. J Mater Sci: Mater Electron 30, 18123–18134 (2019). https://doi.org/10.1007/s10854-019-02165-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02165-4

Navigation