Skip to main content
Log in

Electromagnetic and microwave absorption properties of carbonyl iron and CaCu3Ti4O12 composites in the X and Ku bands

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Electronic devices and telecommunication systems operating in the gigahertz range have increased the problems related to electromagnetic interference. Radar absorber materials (RAM) are being developed to overcome this situation. Due to its dielectric properties, one option for this application is high dielectric constant materials, such as CaCu3Ti4O12 (CCTO). In this work, a mixture of CCTO and carbonyl iron powder (CI) was prepared and processed by solid-state reaction, with 200 °C and 300 °C sets for 2 h. The CCTO + CI mixtures were structural and morphologically characterized and used as fillers in a polymer matrix. Three composites were prepared using the mixed additive, and the samples were heated. Samples, with a thickness of 2 mm, were designed to study the electromagnetic properties of the material and absorption potential for microwaves in the frequency range of the X (8.2 to 12.4 GHz) and Ku (12.4 to 18 GHz) bands. These bands are used more extensively in defense, antennas, space, and others. In the X band, only the sample CCTO + CI 300 °C—2 h shows good absorption performance, and the effective bandwidth (less than − 10 dB) was 1.29 GHz. Finally, in Ku band, the reflection loss results for the samples CCTO + CI 200 °C—2 h and CCTO + CI 300 °C—2 h show a bandwidth 2.9 GHz and 4.9 GHz, respectively, with more than 90% reflection, and the maximum value for RL was − 15.6 dB at 13.81 GHz and − 25.33 dB at 15.24 GHz, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. A. Ghasemi, The role of multi-walled carbon nanotubes on the magnetic and reflection loss characteristics of substituted strontium ferrite nanoparticles. J. Magn. Magn. Mater. 330(3), 163–168 (2013). https://doi.org/10.1016/j.jmmm.2012.10.033

    Article  CAS  Google Scholar 

  2. S.S. de Pinto, J.P.B. Machado, N.A.S. Gomes, M.C. Rezende, The influence of morphology, structure, and weight fraction of magnetic additives on the electromagnetic characteristics of composites. J. Magn. Magn. Mater. 484, 126–138 (2019). https://doi.org/10.1016/j.jmmm.2019.03.085

    Article  CAS  Google Scholar 

  3. A.G. D’Aloia, F. Marra, A. Tamburrano, G. De Bellis, M.S. Sarto, Electromagnetic absorbing properties of graphene–polymer composite shields. Carbon N. Y. 73, 175–184 (2014). https://doi.org/10.1016/J.CARBON.2014.02.053

    Article  Google Scholar 

  4. A.P.S. Oliveira et al., Study of the influence of carbonyl iron particulate size as an electromagnetic radiation absorbing material in 12.4 to 18 GHz (Ku) Band. J. Microwaves Optoelectron. Electromagn. Appl. 17(4), 619–627 (2018). https://doi.org/10.1590/2179-10742018v17i41547

    Article  CAS  Google Scholar 

  5. R. König et al., The crystal structures of carbonyl iron powder - revised using in situ synchrotron XRPD. Zeitschrift fur Krist. Cryst. Mater. 232(12), 835–842 (2017). https://doi.org/10.1515/zkri-2017-2067

    Article  CAS  Google Scholar 

  6. C.C. Chen, W.F. Liang, Y.H. Nien, H.K. Liu, R. Bin Yang, Microwave absorbing properties of flake-shaped carbonyl iron/reduced graphene oxide/epoxy composites. Mater. Res. Bull. 96, 81–85 (2017). https://doi.org/10.1016/j.materresbull.2017.01.045

    Article  CAS  Google Scholar 

  7. D.S. Klygach et al., Magnetic and microwave properties of carbonyl iron in the high frequency range. J. Magn. Magn. Mater. 490, 165493 (2019). https://doi.org/10.1016/j.jmmm.2019.165493

    Article  CAS  Google Scholar 

  8. J. Mohammed et al., Electromagnetic interference (EMI)shielding, microwave absorption, and optical sensing properties of BaM/CCTO composites in Ku –band. Results Phys. (2019). https://doi.org/10.1016/j.rinp.2019.102307

    Article  Google Scholar 

  9. A. Hojjati-Najafabadi, A. Ghasemi, R. Mozaffarinia, Magneto-electric features of BaFe9.5Al1.5CrO19-CaCu3Ti4O12 nanocomposites. Ceram. Int. 43(1), 244–249 (2017). https://doi.org/10.1016/J.CERAMINT.2016.09.145

    Article  CAS  Google Scholar 

  10. Y. Qing, Z. Yang, Q. Wen, F. Luo, CaCu3Ti4O12 particles and MWCNT-filled microwave absorber with improved microwave absorption by FSS incorporation. Appl. Phys. A Mater. Sci. Process. 122(7), 1–8 (2016). https://doi.org/10.1007/s00339-016-0185-6

    Article  CAS  Google Scholar 

  11. J. Mohammed et al., Lightweight SrM/CCTO/rGO nanocomposites for optoelectronics and Ku band microwave absorption. J. Mater. Sci. Mater. Electron. 30(4), 4026–4040 (2019). https://doi.org/10.1007/S10854-019-00690-W

    Article  CAS  Google Scholar 

  12. Y. Qing, W. Zhou, F. Luo, D. Zhu, Effect of magnetic fillers on the electromagnetic properties of CaCu 3Ti4O12-epoxy composites within the 2–18 GHz range. J. Mater. Chem. C 1(3), 536–541 (2013). https://doi.org/10.1039/c2tc00150k

    Article  CAS  Google Scholar 

  13. S.S.S. Afghahi, M. Jafarian, C.A. Stergiou, Multicomponent nanocomposites with carbonyl Fe-CoFe2O4-CaTiO3 fillers for microwave absorption applications. Mater. Des. 112, 462–468 (2016). https://doi.org/10.1016/J.MATDES.2016.09.106

    Article  CAS  Google Scholar 

  14. X. Wang, X. Xu, W. Gong, Z. Feng, R. Gong, Electromagnetic properties of Fe-Si-Al/BaTiO3/Nd 2Fe14B particulate composites at microwave frequencies. J. Appl. Phys. 115(17), 17–20 (2014). https://doi.org/10.1063/1.4865218

    Article  CAS  Google Scholar 

  15. P. Scherrer, Bestimmung der Größe und der inneren Struktur von Kolloidteilchen mittels Röntgenstrahlen. Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen. Math. Klasse 1918, 98–100 (1918)

    Google Scholar 

  16. W. Wang, J. Guo, C. Long, W. Li, J. Guan, Flaky carbonyl iron particles with both small grain size and low internal strain for broadband microwave absorption. J. Alloys Compd. 637, 106–111 (2015). https://doi.org/10.1016/j.jallcom.2015.02.220

    Article  CAS  Google Scholar 

  17. H. Wei et al., Influence of heat treatment on the microwave absorption properties of flaky carbonyl iron powder. Int. J. Light. Mater. Manuf. 3(3), 258–264 (2020). https://doi.org/10.1016/j.ijlmm.2020.02.001

    Article  Google Scholar 

  18. G.K. Williamson, W.H. Hall, X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1(1), 22–31 (1953). https://doi.org/10.1016/0001-6160(53)90006-6

    Article  CAS  Google Scholar 

  19. L. Liu et al., Tailoring impedance match and enhancing microwave absorption of Fe3O4/Bi24Fe2O39/Bi hollow porous microrods by controlling their composition. Prog. Nat. Sci. Mater. Int. 28(5), 575–583 (2018). https://doi.org/10.1016/J.PNSC.2018.08.008

    Article  CAS  Google Scholar 

  20. M. Koeda, A. Harada, H. Ono, T. Ishikura, T. Kuroda, H. Moro, Investigation of carbonyl iron powder for development of power inductors for high frequency. Electron. Commun. Japan 96(9), 46–52 (2013). https://doi.org/10.1002/ecj.11408

    Article  Google Scholar 

  21. G. Herzer, Grain size dependence of coercivity and permeability in nanocrystalline ferromagnets. IEEE Trans. Magn. 26(5), 1397–1402 (1990). https://doi.org/10.1109/20.104389

    Article  CAS  Google Scholar 

  22. A.M. Nicolson, G.F. Ross, Measurement of the intrinsic properties of materials by time-domain techniques. IEEE Trans. Instrum. Meas. 19(4), 377–382 (1970). https://doi.org/10.1109/TIM.1970.4313932

    Article  Google Scholar 

  23. K.L. Ngai, R.W. Rendell, Interpreting the real part of the dielectric permittivity contributed by mobile ions in ionically conducting materials. Phys. Rev. B 61(14), 9393 (2000). https://doi.org/10.1103/PhysRevB.61.9393

    Article  CAS  Google Scholar 

  24. J. He, W. Wang, A. Wang, J. Guan, Annealing temperature effect on microstructure, magnetic and microwave properties of Fe-based amorphous alloy powders. J. Magn. Magn. Mater. 324(18), 2902–2906 (2012). https://doi.org/10.1016/j.jmmm.2012.04.036

    Article  CAS  Google Scholar 

  25. Y. Qing, W. Zhou, F. Luo, D. Zhu, Microwave-absorbing and mechanical properties of carbonyl-iron/epoxy-silicone resin coatings. J. Magn. Magn. Mater. 321(1), 25–28 (2009). https://doi.org/10.1016/J.JMMM.2008.07.011

    Article  CAS  Google Scholar 

  26. L. He et al., Preparation of reduced graphene oxide coated flaky carbonyl iron composites and their excellent microwave absorption properties. RSC Adv. 8(6), 2971–2977 (2018). https://doi.org/10.1039/C7RA12984J

    Article  CAS  Google Scholar 

  27. H. Yan, X. Song, Y. Wang, Study on wave absorption properties of carbonyl iron and SiO2 coated carbonyl iron particles. AIP Adv. 8(6), 065322 (2018). https://doi.org/10.1063/1.5034496

    Article  CAS  Google Scholar 

  28. J. He, W. Wang, J. Guan, Internal strain dependence of complex permeability of ball milled carbonyl iron powders in 2–18 GHz. J. Appl. Phys. 111(9), 1–6 (2012). https://doi.org/10.1063/1.4716028

    Article  CAS  Google Scholar 

  29. L. Heng et al., Carbonyl iron/graphite microspheres with good impedance matching for ultra-broadband and highly efficient electromagnetic absorption. Opt. Mater. Express 8(11), 3319–3331 (2018). https://doi.org/10.1364/OME.8.003319

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001 and by Financiadora de Estudos e Projetos – Brasil (FINEP).

Funding

Funding was provided by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Grant No. 001). Plinio Tenório, Financiadora de Estudos e Projetos.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Plínio Ivo Gama Tenório.

Ethics declarations

Competing interest

This work is a part of PhD research of first author, who do not have any conflicts of interest.

Research involved in human and animal participants

This study did not used human participants and/or animals.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tenório, P.I.G., Oliveira, A.P.S., Batista, A.F. et al. Electromagnetic and microwave absorption properties of carbonyl iron and CaCu3Ti4O12 composites in the X and Ku bands. J Mater Sci: Mater Electron 33, 24125–24136 (2022). https://doi.org/10.1007/s10854-022-09061-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09061-4

Navigation