Skip to main content
Log in

Effect of dispersion on visible light transmittance and resistivity of indium tin oxide nanoparticles prepared by cetyltrimethylammonium bromide-assisted coprecipitation method

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A new strategy for decreasing resistivity while increasing visible light transmission of indium tin oxide nanoparticles (ITO NPs) was reported in this paper. Cubic phase ITO NPs with high dispersion were synthesized by coprecipitation method with cetyltrimethylammonium bromide (CTAB) assisted. The effects of dispersion on the optical and electrical properties of ITO NPs were investigated systematically. Surface potential of ITO NPs synthesized with 1.5 g/L of CTAB was increased from − 4.5 to 13.0 mV, resulting in an increase in visible light transmittance of ITO NPs from 70 to 92% and a decrease in resistivity from 6.5 × 10−1 to 3.5 × 10−1 Ω cm. The fitting equation between the visible light transmittance (T) of ITO NP and its absolute value of Zeta potential (μ) was \(T = 60.862 + 2.287 \mu\), while the fitting equation of its resistivity (ρ) and absolute value of Zeta potential (μ) was \(\rho = 0.7968 - 0.0350 \mu\). This result showed that the dispersion of ITO NPs had a great contribution to improving their optical and electrical properties. And the mechanism of the influence of dispersion on optical and electrical properties of ITO NPs was also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. G. Genesio, J. Maynadie, M. Carboni, D. Meyer, New J. Chem. 42, 2351–2363 (2018)

    Article  CAS  Google Scholar 

  2. S. Yang, J. Zhong, B. Sun, X. Zeng, W. Luo, X. Zhao, Y. Shu, J. Chen, J. He, J. Mater. Sci.: Mater. Electron. 30, 13005–13012 (2019)

    CAS  Google Scholar 

  3. A. Murali, H.Y. Sohn, Mater. Res. Express 5, 065045 (2018)

    Article  Google Scholar 

  4. Y. Yan, Y. Wei, C. Zhao, M. Shi, L. Chen, C. Fan, M.J. Carnie, R. Yang, Y. Xu, J. Solid State Chem. 269, 24–29 (2019)

    Article  CAS  Google Scholar 

  5. Y. Shao, X. Xiao, L. Wang, Y. Liu, S. Zhang, Adv. Funct. Mater. 24, 4170–4175 (2014)

    Article  CAS  Google Scholar 

  6. A. Dolgonos, T.O. Mason, K.R. Poeppelmeier, J. Solid State Chem. 240, 43–48 (2016)

    Article  CAS  Google Scholar 

  7. Y. Luo, Y. Zhang, J. Huang, CrystEngComm 19, 6972–6978 (2017)

    Article  CAS  Google Scholar 

  8. C. Sun, C.H. Cheng, B.L. Zhang, R.X. Li, Y. Wang, W.F. Liu, Y.M. Luo, G.T. Du, S.L. Cong, Appl. Surf. Sci. 422, 125–129 (2017)

    Article  CAS  Google Scholar 

  9. E.B. Aydin, M.K. Sezginturk, Trac-Trends Anal. Chem. 97, 309–315 (2017)

    Article  CAS  Google Scholar 

  10. B.C. Yadav, K. Agrahari, S. Singh, T.P. Yadav, J. Mater. Sci.: Mater. Electron. 27, 4172–4179 (2016)

    CAS  Google Scholar 

  11. O.V. Zhilova, S.Y. Pankov, A.V. Sitnikov, Y.E. Kalinin, M.N. Volochaev, V.A. Makagonov, J. Mater. Sci.: Mater. Electron. 30, 11859–11867 (2019)

    CAS  Google Scholar 

  12. S.J. Shih, Y.C. Lin, S.H. Lin, P. Veteska, D. Galusek, W.H. Tuan, Ceram. Int. 42, 11324–11329 (2016)

    Article  CAS  Google Scholar 

  13. R.R. Kumar, K.N. Rao, K. Rajanna, A.R. Phani, Mater. Res. Bull. 52, 167–176 (2014)

    Article  CAS  Google Scholar 

  14. T. Ito, H. Uchiyama, H. Kozuka, Langmuir 33, 5314–5320 (2017)

    Article  CAS  Google Scholar 

  15. S. Khalid, E. Ahmed, M.A. Malik, D.J. Lewis, S.A. Bakar, Y. Khan, P. Brien, New J. Chem. 39, 1013–1021 (2015)

    Article  CAS  Google Scholar 

  16. C.J. Capozzi, R.A. Gerhardt, Adv. Funct. Mater. 17, 2515–2521 (2007)

    Article  CAS  Google Scholar 

  17. C. Kim, Y.H. Kim, Y.Y. Noh, S.J. Hong, M.J. Lee, Adv. Electron. Mater. 4, 1700429 (2018)

    Article  Google Scholar 

  18. A.H. Ali, A.S. Bakar, Z. Hassan, Appl. Surf. Sci. 315, 387–391 (2014)

    Article  CAS  Google Scholar 

  19. C. David, B.P. Tinkham, P. Prunici, A. Panckow, Surf. Coat. Technol. 314, 113–117 (2016)

    Article  Google Scholar 

  20. H. Zhang, C. Nie, J. Wang, R. Guan, D. Cao, Talanta 195, 713–719 (2019)

    Article  CAS  Google Scholar 

  21. E. Ye, S.Y. Zhang, S.H. Lim, S. Liu, M.Y. Han, Phys. Chem. Chem. Phys. 12, 11923–11929 (2010)

    Article  CAS  Google Scholar 

  22. X. Zhai, Y. Chen, Y. Ma, Y. Liu, J. Liu, Ceram. Int. (2019). https://doi.org/10.1016/j.ceramint.2019.05.319

    Article  Google Scholar 

  23. S.C. Kulkarni, D.S. Patil, J. Mater. Sci.: Mater. Electron. 27, 3731–3735 (2016)

    CAS  Google Scholar 

  24. Y. Yu, S. Qu, D. Zang, L. Wang, H. Wu, Nanoscale Res. Lett. 13, 50 (2018)

    Article  Google Scholar 

  25. G.G. Xu, X.D. Zhang, W. He, H. Liu, H. Li, R.I. Boughton, Mater. Lett. 60, 962–965 (2006)

    Article  CAS  Google Scholar 

  26. Y.Q. Zhang, J.X. Liu, Chin. J. Inorg. Chem. 33, 249–254 (2017)

    CAS  Google Scholar 

  27. D. Lan, M. Qin, R. Yang, H. Wu, Z. Jia, K. Kou, G. Wu, Y. Fan, Q. Fu, F. Zhang, J. Mater. Sci.: Mater. Electron. 30, 8771–8776 (2019)

    CAS  Google Scholar 

  28. T.I. Zubar, V.M. Fedosyuk, A.V. Trukhanov, N.N. Kovaleva, K.A. Astapovich, D.A. Vinnik, E.L. Trukhanova, A.L. Kozlovskiy, M.V. Zdorovets, A.A. Solobai, D.I. Tishkevich, S.V. Trukhanov, J. Electrochem. Soc. 166, D173–D180 (2019)

    Article  CAS  Google Scholar 

  29. Y. Masuda, T. Ohji, K. Kato, J. Solid State Chem. 189, 21–24 (2012)

    Article  CAS  Google Scholar 

  30. F. Mei, T. Yuan, R. Li, K. Qin, W. Zhao, S. Jiang, Ceram. Int. 44, 7491–7499 (2018)

    Article  CAS  Google Scholar 

  31. H. Wu, G. Wu, Y. Ren, X. Li, L. Wang, Chemistry A 22, 8864–8871 (2016)

    CAS  Google Scholar 

  32. D. Selvakumar, N. Dharmaraj, K. Kadirvelu, N.S. Kumar, V.C. Padaki, Spectrochimica Acta Part A 133, 335–339 (2014)

    Article  CAS  Google Scholar 

  33. L.T. Lin, L. Tang, R. Zhang, C. Deng, D.J. Chen, L.W. Cao, J.-X. Meng, Mater. Res. Bull. 64, 139–145 (2015)

    Article  CAS  Google Scholar 

  34. Y. Liu, J. Liu, Mater. Res. Express 6 (2019)

    Article  Google Scholar 

  35. B. Warcholinski, A. Gilewicz, T.A. Kuznetsova, T.I. Zubar, S.A. Chizhik, S.O. Abetkovskaia, V.A. Lapitskaya, Surf. Coat. Technol. 319, 117–128 (2017)

    Article  CAS  Google Scholar 

  36. Z. Chen, X. Qin, T. Zhou, X. Wu, S. Shao, M. Xie, Z. Cui, J. Mater. Chem. C 3, 11464–11470 (2015)

    Article  CAS  Google Scholar 

  37. J. Parra Barranco, F.J. Garcia Garcia, V. Rico, A. Borras, C. Lopez Santos, F. Frutos, A. Barranco, A.R. Gonzalez Elipe, Acs Appl. Mater. Interfaces 7, 10993–11001 (2015)

    Article  CAS  Google Scholar 

  38. H.N. Cui, V. Teixeira, A. Monteiro, Vacuum 67, 589–594 (2002)

    Article  CAS  Google Scholar 

  39. M. Gross, A. Winnacker, P.J. Wellmann, Thin Solid Films 515, 8567–8572 (2007)

    Article  CAS  Google Scholar 

  40. B. Sasi, K.G. Gopchandran, P.K. Manoj, P. Koshy, P. Prabhakara Rao, V.K. Vaidyan, Vacuum 68, 149–154 (2002)

    Article  CAS  Google Scholar 

  41. W.F. Cai, J.F. Geng, K.B. Pu, Q. Ma, D.W. Jing, Y.H. Wang, Q.Y. Chen, H. Liu, Chem. Eng. J. 333, 572–582 (2018)

    Article  CAS  Google Scholar 

  42. Y. Zhang, J. Liu, Chem. J. Chin. Univ. Chin. 38, 1110–1116 (2017)

    CAS  Google Scholar 

  43. V. Senthilkumar, K. Senthil, P. Vickraman, Mater. Res. Bull. 47, 1051–1056 (2012)

    Article  CAS  Google Scholar 

  44. B. Shong, N. Shin, Y.H. Lee, K.H. Ahn, Y.W. Lee, J. Supercrit. Fluids 113, 39–43 (2016)

    Article  CAS  Google Scholar 

  45. X. Zhang, J. Liu, Rare Met. Mater. Eng. 46, 1714–1718 (2017)

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by Beijing Natural Science Foundation (No. 2192041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiaxiang Liu.

Ethics declarations

Conflicts of interest

There are no conflicts of interest to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Y., Liang, F., Liu, Y. et al. Effect of dispersion on visible light transmittance and resistivity of indium tin oxide nanoparticles prepared by cetyltrimethylammonium bromide-assisted coprecipitation method. J Mater Sci: Mater Electron 30, 17963–17971 (2019). https://doi.org/10.1007/s10854-019-02150-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02150-x

Navigation