Skip to main content
Log in

Highly efficient, visible active TiO2/CdS/ZnS photocatalyst, study of activity in an ultra low energy consumption LED based photo reactor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Nano Titania is the promising material for the photocatalytic process used in the minimization of the organic pollutant. However, there is need to enhance its absorption and surface properties to design a material having high efficacy. In this study, we report the synthesis of binary and ternary TiO2 nano-composites using the CdS and ZnS nanoparticles by adopting the low temperature two-step hydrothermal approach. The synthesized materials were characterized by using XRD, UV-DRS, FESEM, HRTEM, XPS and BET surface area analyzer. The photocatalytic activity was evaluated by taking the Rhodamine B (RhB) as model pollutant by employing an ultra low LED photo reactor. It was found that, the ternary TiO2/CdS/ZnS composite containing 10% ZnS and 20% CdS in wt. ratio showed the best activity towards the removal of RhB. The enhanced activity was due to improvement in the absorbance in the visible region and formation of heterojunction, which enhanced the lifetime of photoinduced charged species by the reduction in charge recombination. Reactive species, prominently responsible for degradation was identified by the scavenger action. The degradation pathway by which the RhB degraded is also discussed and found that degradation pathway altered with pH of solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. K. Melghit, K. Bouziane, J. Alloys Compd. 453, 102 (2008)

    CAS  Google Scholar 

  2. N. Kumar, N.S. Chauhan, A. Mittal, S. Sharma, Biometals 31, 147 (2018)

    CAS  Google Scholar 

  3. A. Mittal, B. Mari, S. Sharma, V. Kumari, S. Maken, K. Kumari, N. Kumar, J. Mater. Sci.: Mater. Electron. 30, 3186 (2019)

    CAS  Google Scholar 

  4. N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, J. Photochem. Photobiol. A 85, 247 (1995)

    CAS  Google Scholar 

  5. Y. Jin-nouchi, S. Naya, H. Tada, J. Phys. Chem. C 114, 16837 (2010)

    CAS  Google Scholar 

  6. R. Wang, D. Xu, J. Liu, K. Li, H. Wang, Chem. Eng. J. 168, 455 (2011)

    CAS  Google Scholar 

  7. V. Kumari, A. Mittal, J. Jindal, S. Yadav, N. Kumar, Front. Mater. Sci. 13, 1 (2019)

    Google Scholar 

  8. N. Verma, S. Yadav, B. Marí, A. Mittal, J. Jindal, Trans. Indian Ceram. Soc. 77, 1 (2018)

    CAS  Google Scholar 

  9. A. Umar, M.S. Akhtar, A. Al-Hajry, M.S. Al-Assiri, G.N. Dar, M. Saif Islam, Chem. Eng. J. 262, 588 (2015)

    CAS  Google Scholar 

  10. S. Kalathil, M.M. Khan, S.A. Ansari, J. Lee, M.H. Cho, Nanoscale 5, 6323 (2013)

    CAS  Google Scholar 

  11. M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, D.H. Han, J. Lee, M.H. Cho, J. Mater. Chem. A 2, 637 (2013)

    Google Scholar 

  12. M.M. Khan, S.A. Ansari, D. Pradhan, D.H. Han, J. Lee, M.H. Cho, Ind. Eng. Chem. Res. 53, 9754 (2014)

    CAS  Google Scholar 

  13. R. Asahi, T. Morikawa, H. Irie, T. Ohwaki, Chem. Rev. 114, 9824 (2014)

    CAS  Google Scholar 

  14. M. Grätzel, J. Photochem. Photobiol. C Photochem. Rev. 4, 145 (2003)

    Google Scholar 

  15. S. Qian, C. Wang, W. Liu, Y. Zhu, W. Yao, X. Lu, J. Mater. Chem. 21, 4945 (2011)

    CAS  Google Scholar 

  16. A.M. Roy, G.C. De, J. Photochem. Photobiol. A 157, 87 (2003)

    CAS  Google Scholar 

  17. X. Zhang, Y. Wang, B. Liu, Y. Sang, H. Liu, Appl. Catal. B 202, 620 (2017)

    CAS  Google Scholar 

  18. D. Zhao, C.-F. Yang, Renew. Sustain. Energy Rev. 54, 1048 (2016)

    CAS  Google Scholar 

  19. M. Zubair, I.-H. Svenum, M. Rønning, J. Yang, Catal. Today 328, 15 (2019)

    CAS  Google Scholar 

  20. X. Guo, C. Chen, W. Song, X. Wang, W. Di, W. Qin, J. Mol. Catal. A 387, 1 (2014)

    CAS  Google Scholar 

  21. L. Zhu, Z. Meng, K. Cho, W. Oh, New Carbon Mater. 27, 166 (2012)

    CAS  Google Scholar 

  22. S.M.H. Al-Jawad, Mater. Sci. Semicond. Process. 67, 75 (2017)

    CAS  Google Scholar 

  23. S.S.M. Bhat, S.A. Pawar, D. Potphode, C.-K. Moon, J.M. Suh, C. Kim, S. Choi, D.S. Patil, J.-J. Kim, J.C. Shin, H.W. Jang, Appl. Catal. B (2019). https://doi.org/10.1016/j.apcatb.2019.118102

    Article  Google Scholar 

  24. W. Li, D. Li, S. Meng, W. Chen, X. Fu, Y. Shao, Environ. Sci. Technol. 45, 2987 (2011)

    CAS  Google Scholar 

  25. K. Li, S. Gao, Q. Wang, H. Xu, Z. Wang, B. Huang, Y. Dai, J. Lu, A.C.S. Appl, Mater. Interfaces 7, 9023 (2015)

    CAS  Google Scholar 

  26. K. Natarajan, H.C. Bajaj, R.J. Tayade, J. Ind. Eng. Chem. 34, 146 (2016)

    CAS  Google Scholar 

  27. S. Xie, K. Ouyang, X. Ma, Ceram. Int. 40, 12353 (2014)

    CAS  Google Scholar 

  28. H. Zhao, Y. Dong, P. Jiang, G. Wang, J. Zhang, A.C.S. Appl, Mater. Interfaces 7, 6451 (2015)

    CAS  Google Scholar 

  29. G. Dai, J. Yu, G. Liu, J. Phys. Chem. C 115, 7339 (2011)

    CAS  Google Scholar 

  30. S. Liu, N. Zhang, Z.-R. Tang, Y.-J. Xu, A.C.S. Appl, Mater. Interfaces 4, 6378 (2012)

    CAS  Google Scholar 

  31. H.L. Meng, C. Cui, H.L. Shen, D.Y. Liang, Y.Z. Xue, P.G. Li, W.H. Tang, J. Alloys Compd. 527, 30 (2012)

    CAS  Google Scholar 

  32. N. Soltani, E. Saion, W.M.M. Yunus, M. Erfani, M. Navasery, G. Bahmanrokh, K. Rezaee, Appl. Surf. Sci. 290, 440 (2014)

    CAS  Google Scholar 

  33. X. Li, X. Chen, H. Niu, X. Han, T. Zhang, J. Liu, H. Lin, F. Qu, J. Colloid Interface Sci. 452, 89 (2015)

    CAS  Google Scholar 

  34. Z.-R. Tang, X. Yin, Y. Zhang, Y.-J. Xu, Inorg. Chem. 52, 11758 (2013)

    CAS  Google Scholar 

  35. X. Wang, X. Li, Int. J. Green Energy 13, 1201 (2016)

    CAS  Google Scholar 

  36. J.-N. Nian, H. Teng, J. Phys. Chem. B 110, 4193 (2006)

    CAS  Google Scholar 

  37. D. Wu, Z. Gao, F. Xu, J. Chang, S. Gao, K. Jiang, CrystEngComm 15, 516 (2012)

    Google Scholar 

  38. Y.-C. Liang, N.-C. Xu, RSC Adv. 8, 22437 (2018)

    CAS  Google Scholar 

  39. L. Li, L. Wang, T. Hu, W. Zhang, X. Zhang, X. Chen, J. Solid State Chem. 218, 81 (2014)

    CAS  Google Scholar 

  40. A. Gadalla, M.S.A. El-Sadek and R. Hamood, 11 (n.d.)

  41. N. Kashif, F. Ouyang, J. Environ. Sci. 21, 527 (2009)

    CAS  Google Scholar 

  42. S. Hemmati Borji, S. Nasseri, A.H. Mahvi, R. Nabizadeh, A.H. Javadi, J. Environ. Health Sci. Eng. 12, 101 (2014)

    Google Scholar 

  43. L. Wu, J.C. Yu, X. Fu, J. Mol. Catal. A 244, 25 (2006)

    CAS  Google Scholar 

  44. D.P. Wang, H.C. Zeng, Chem. Mater. 21, 4811 (2009)

    CAS  Google Scholar 

  45. N. Bao, L. Shen, T. Takata, K. Domen, A. Gupta, K. Yanagisawa, C.A. Grimes, J. Phys. Chem. C 111, 17527 (2007)

    CAS  Google Scholar 

  46. S.B. Kokane, S.D. Sartale, K.G. Girija, Jagannath, R. Sasikala, Int. J. Hydrog. Energy 40, 13431 (2015)

  47. H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, ACS Nano 4, 380 (2010)

    CAS  Google Scholar 

  48. Y. Du, W. Ma, P. Liu, B. Zou, J. Ma, J. Hazard. Mater. 308, 58 (2016)

    CAS  Google Scholar 

  49. K. Yu, S. Yang, H. He, C. Sun, C. Gu, Y. Ju, J. Phys. Chem. A 113, 10024 (2009)

    CAS  Google Scholar 

  50. G. Liu, X. Li, J. Zhao, H. Hidaka, N. Serpone, Environ. Sci. Technol. 34, 3982 (2000)

    CAS  Google Scholar 

  51. L.A. Pérez-Estrada, A. Agüera, M.D. Hernando, S. Malato, A.R. Fernández-Alba, Chemosphere 70, 2068 (2008)

    Google Scholar 

  52. X. Hu, T. Mohamood, W. Ma, C. Chen, J. Zhao, J. Phys. Chem. B 110, 26012 (2006)

    CAS  Google Scholar 

  53. O. Merka, V. Yarovyi, D.W. Bahnemann, M. Wark, J. Phys. Chem. C 115, 8014 (2011)

    CAS  Google Scholar 

  54. M. Liu, J. Zheng, Q. Liu, S. Xu, M. Wu, Q. Xue, Z. Yan, H. Xiao, Z. Wei, H. Zhu, RSC Adv. 3, 9483 (2013)

    CAS  Google Scholar 

  55. X. Li, T. Xia, C. Xu, J. Murowchick, X. Chen, Catal. Today 225, 64 (2014)

    CAS  Google Scholar 

  56. G. Sun, C. Zhu, J. Zheng, B. Jiang, H. Yin, H. Wang, S. Qiu, J. Yuan, M. Wu, W. Wu, Q. Xue, Mater. Lett. 166, 113 (2016)

    CAS  Google Scholar 

  57. A.B. Makama, A. Salmiaton, E.B. Saion, T.S.Y. Choong, N. Abdullah, Int. J. Photoenergy 2016, 1 (2016)

    Google Scholar 

  58. S. Bai, H. Li, Y. Guan, S. Jiang, Appl. Surf. Sci. 257, 6406 (2011)

    CAS  Google Scholar 

  59. C. Lin, Y. Song, L. Cao, S. Chen, J. Chin. Adv. Mater. Soc. 1, 188 (2013)

    CAS  Google Scholar 

Download references

Acknowledgements

AM and NK are highly thankful to Council for Scientific and Industrial Research, New Delhi and Maharshi Dayanand University, Rohtak respectively for the financial support. The authors are thankful to Materials Research center, MNIT Jaipur, India for HRTEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naveen Kumar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mittal, A., Sharma, S., Kumari, V. et al. Highly efficient, visible active TiO2/CdS/ZnS photocatalyst, study of activity in an ultra low energy consumption LED based photo reactor. J Mater Sci: Mater Electron 30, 17933–17946 (2019). https://doi.org/10.1007/s10854-019-02147-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02147-6

Navigation