Advertisement

Highly efficient, visible active TiO2/CdS/ZnS photocatalyst, study of activity in an ultra low energy consumption LED based photo reactor

  • Anuj Mittal
  • Shankar Sharma
  • Vijaya Kumari
  • Suprabha Yadav
  • Nar Singh Chauhan
  • Naveen KumarEmail author
Article
  • 19 Downloads

Abstract

Nano Titania is the promising material for the photocatalytic process used in the minimization of the organic pollutant. However, there is need to enhance its absorption and surface properties to design a material having high efficacy. In this study, we report the synthesis of binary and ternary TiO2 nano-composites using the CdS and ZnS nanoparticles by adopting the low temperature two-step hydrothermal approach. The synthesized materials were characterized by using XRD, UV-DRS, FESEM, HRTEM, XPS and BET surface area analyzer. The photocatalytic activity was evaluated by taking the Rhodamine B (RhB) as model pollutant by employing an ultra low LED photo reactor. It was found that, the ternary TiO2/CdS/ZnS composite containing 10% ZnS and 20% CdS in wt. ratio showed the best activity towards the removal of RhB. The enhanced activity was due to improvement in the absorbance in the visible region and formation of heterojunction, which enhanced the lifetime of photoinduced charged species by the reduction in charge recombination. Reactive species, prominently responsible for degradation was identified by the scavenger action. The degradation pathway by which the RhB degraded is also discussed and found that degradation pathway altered with pH of solution.

Notes

Acknowledgements

AM and NK are highly thankful to Council for Scientific and Industrial Research, New Delhi and Maharshi Dayanand University, Rohtak respectively for the financial support. The authors are thankful to Materials Research center, MNIT Jaipur, India for HRTEM analysis.

References

  1. 1.
    K. Melghit, K. Bouziane, J. Alloys Compd. 453, 102 (2008)Google Scholar
  2. 2.
    N. Kumar, N.S. Chauhan, A. Mittal, S. Sharma, Biometals 31, 147 (2018)Google Scholar
  3. 3.
    A. Mittal, B. Mari, S. Sharma, V. Kumari, S. Maken, K. Kumari, N. Kumar, J. Mater. Sci.: Mater. Electron. 30, 3186 (2019)Google Scholar
  4. 4.
    N. Serpone, P. Maruthamuthu, P. Pichat, E. Pelizzetti, H. Hidaka, J. Photochem. Photobiol. A 85, 247 (1995)Google Scholar
  5. 5.
    Y. Jin-nouchi, S. Naya, H. Tada, J. Phys. Chem. C 114, 16837 (2010)Google Scholar
  6. 6.
    R. Wang, D. Xu, J. Liu, K. Li, H. Wang, Chem. Eng. J. 168, 455 (2011)Google Scholar
  7. 7.
    V. Kumari, A. Mittal, J. Jindal, S. Yadav, N. Kumar, Front. Mater. Sci. 13, 1 (2019)Google Scholar
  8. 8.
    N. Verma, S. Yadav, B. Marí, A. Mittal, J. Jindal, Trans. Indian Ceram. Soc. 77, 1 (2018)Google Scholar
  9. 9.
    A. Umar, M.S. Akhtar, A. Al-Hajry, M.S. Al-Assiri, G.N. Dar, M. Saif Islam, Chem. Eng. J. 262, 588 (2015)Google Scholar
  10. 10.
    S. Kalathil, M.M. Khan, S.A. Ansari, J. Lee, M.H. Cho, Nanoscale 5, 6323 (2013)Google Scholar
  11. 11.
    M.M. Khan, S.A. Ansari, D. Pradhan, M.O. Ansari, D.H. Han, J. Lee, M.H. Cho, J. Mater. Chem. A 2, 637 (2013)Google Scholar
  12. 12.
    M.M. Khan, S.A. Ansari, D. Pradhan, D.H. Han, J. Lee, M.H. Cho, Ind. Eng. Chem. Res. 53, 9754 (2014)Google Scholar
  13. 13.
    R. Asahi, T. Morikawa, H. Irie, T. Ohwaki, Chem. Rev. 114, 9824 (2014)Google Scholar
  14. 14.
    M. Grätzel, J. Photochem. Photobiol. C Photochem. Rev. 4, 145 (2003)Google Scholar
  15. 15.
    S. Qian, C. Wang, W. Liu, Y. Zhu, W. Yao, X. Lu, J. Mater. Chem. 21, 4945 (2011)Google Scholar
  16. 16.
    A.M. Roy, G.C. De, J. Photochem. Photobiol. A 157, 87 (2003)Google Scholar
  17. 17.
    X. Zhang, Y. Wang, B. Liu, Y. Sang, H. Liu, Appl. Catal. B 202, 620 (2017)Google Scholar
  18. 18.
    D. Zhao, C.-F. Yang, Renew. Sustain. Energy Rev. 54, 1048 (2016)Google Scholar
  19. 19.
    M. Zubair, I.-H. Svenum, M. Rønning, J. Yang, Catal. Today 328, 15 (2019)Google Scholar
  20. 20.
    X. Guo, C. Chen, W. Song, X. Wang, W. Di, W. Qin, J. Mol. Catal. A 387, 1 (2014)Google Scholar
  21. 21.
    L. Zhu, Z. Meng, K. Cho, W. Oh, New Carbon Mater. 27, 166 (2012)Google Scholar
  22. 22.
    S.M.H. Al-Jawad, Mater. Sci. Semicond. Process. 67, 75 (2017)Google Scholar
  23. 23.
    S.S.M. Bhat, S.A. Pawar, D. Potphode, C.-K. Moon, J.M. Suh, C. Kim, S. Choi, D.S. Patil, J.-J. Kim, J.C. Shin, H.W. Jang, Appl. Catal. B (2019).  https://doi.org/10.1016/j.apcatb.2019.118102 CrossRefGoogle Scholar
  24. 24.
    W. Li, D. Li, S. Meng, W. Chen, X. Fu, Y. Shao, Environ. Sci. Technol. 45, 2987 (2011)Google Scholar
  25. 25.
    K. Li, S. Gao, Q. Wang, H. Xu, Z. Wang, B. Huang, Y. Dai, J. Lu, A.C.S. Appl, Mater. Interfaces 7, 9023 (2015)Google Scholar
  26. 26.
    K. Natarajan, H.C. Bajaj, R.J. Tayade, J. Ind. Eng. Chem. 34, 146 (2016)Google Scholar
  27. 27.
    S. Xie, K. Ouyang, X. Ma, Ceram. Int. 40, 12353 (2014)Google Scholar
  28. 28.
    H. Zhao, Y. Dong, P. Jiang, G. Wang, J. Zhang, A.C.S. Appl, Mater. Interfaces 7, 6451 (2015)Google Scholar
  29. 29.
    G. Dai, J. Yu, G. Liu, J. Phys. Chem. C 115, 7339 (2011)Google Scholar
  30. 30.
    S. Liu, N. Zhang, Z.-R. Tang, Y.-J. Xu, A.C.S. Appl, Mater. Interfaces 4, 6378 (2012)Google Scholar
  31. 31.
    H.L. Meng, C. Cui, H.L. Shen, D.Y. Liang, Y.Z. Xue, P.G. Li, W.H. Tang, J. Alloys Compd. 527, 30 (2012)Google Scholar
  32. 32.
    N. Soltani, E. Saion, W.M.M. Yunus, M. Erfani, M. Navasery, G. Bahmanrokh, K. Rezaee, Appl. Surf. Sci. 290, 440 (2014)Google Scholar
  33. 33.
    X. Li, X. Chen, H. Niu, X. Han, T. Zhang, J. Liu, H. Lin, F. Qu, J. Colloid Interface Sci. 452, 89 (2015)Google Scholar
  34. 34.
    Z.-R. Tang, X. Yin, Y. Zhang, Y.-J. Xu, Inorg. Chem. 52, 11758 (2013)Google Scholar
  35. 35.
    X. Wang, X. Li, Int. J. Green Energy 13, 1201 (2016)Google Scholar
  36. 36.
    J.-N. Nian, H. Teng, J. Phys. Chem. B 110, 4193 (2006)Google Scholar
  37. 37.
    D. Wu, Z. Gao, F. Xu, J. Chang, S. Gao, K. Jiang, CrystEngComm 15, 516 (2012)Google Scholar
  38. 38.
    Y.-C. Liang, N.-C. Xu, RSC Adv. 8, 22437 (2018)Google Scholar
  39. 39.
    L. Li, L. Wang, T. Hu, W. Zhang, X. Zhang, X. Chen, J. Solid State Chem. 218, 81 (2014)Google Scholar
  40. 40.
    A. Gadalla, M.S.A. El-Sadek and R. Hamood, 11 (n.d.)Google Scholar
  41. 41.
    N. Kashif, F. Ouyang, J. Environ. Sci. 21, 527 (2009)Google Scholar
  42. 42.
    S. Hemmati Borji, S. Nasseri, A.H. Mahvi, R. Nabizadeh, A.H. Javadi, J. Environ. Health Sci. Eng. 12, 101 (2014)Google Scholar
  43. 43.
    L. Wu, J.C. Yu, X. Fu, J. Mol. Catal. A 244, 25 (2006)Google Scholar
  44. 44.
    D.P. Wang, H.C. Zeng, Chem. Mater. 21, 4811 (2009)Google Scholar
  45. 45.
    N. Bao, L. Shen, T. Takata, K. Domen, A. Gupta, K. Yanagisawa, C.A. Grimes, J. Phys. Chem. C 111, 17527 (2007)Google Scholar
  46. 46.
    S.B. Kokane, S.D. Sartale, K.G. Girija, Jagannath, R. Sasikala, Int. J. Hydrog. Energy 40, 13431 (2015)Google Scholar
  47. 47.
    H. Zhang, X. Lv, Y. Li, Y. Wang, J. Li, ACS Nano 4, 380 (2010)Google Scholar
  48. 48.
    Y. Du, W. Ma, P. Liu, B. Zou, J. Ma, J. Hazard. Mater. 308, 58 (2016)Google Scholar
  49. 49.
    K. Yu, S. Yang, H. He, C. Sun, C. Gu, Y. Ju, J. Phys. Chem. A 113, 10024 (2009)Google Scholar
  50. 50.
    G. Liu, X. Li, J. Zhao, H. Hidaka, N. Serpone, Environ. Sci. Technol. 34, 3982 (2000)Google Scholar
  51. 51.
    L.A. Pérez-Estrada, A. Agüera, M.D. Hernando, S. Malato, A.R. Fernández-Alba, Chemosphere 70, 2068 (2008)Google Scholar
  52. 52.
    X. Hu, T. Mohamood, W. Ma, C. Chen, J. Zhao, J. Phys. Chem. B 110, 26012 (2006)Google Scholar
  53. 53.
    O. Merka, V. Yarovyi, D.W. Bahnemann, M. Wark, J. Phys. Chem. C 115, 8014 (2011)Google Scholar
  54. 54.
    M. Liu, J. Zheng, Q. Liu, S. Xu, M. Wu, Q. Xue, Z. Yan, H. Xiao, Z. Wei, H. Zhu, RSC Adv. 3, 9483 (2013)Google Scholar
  55. 55.
    X. Li, T. Xia, C. Xu, J. Murowchick, X. Chen, Catal. Today 225, 64 (2014)Google Scholar
  56. 56.
    G. Sun, C. Zhu, J. Zheng, B. Jiang, H. Yin, H. Wang, S. Qiu, J. Yuan, M. Wu, W. Wu, Q. Xue, Mater. Lett. 166, 113 (2016)Google Scholar
  57. 57.
    A.B. Makama, A. Salmiaton, E.B. Saion, T.S.Y. Choong, N. Abdullah, Int. J. Photoenergy 2016, 1 (2016)Google Scholar
  58. 58.
    S. Bai, H. Li, Y. Guan, S. Jiang, Appl. Surf. Sci. 257, 6406 (2011)Google Scholar
  59. 59.
    C. Lin, Y. Song, L. Cao, S. Chen, J. Chin. Adv. Mater. Soc. 1, 188 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Anuj Mittal
    • 1
    • 2
  • Shankar Sharma
    • 1
    • 2
  • Vijaya Kumari
    • 1
  • Suprabha Yadav
    • 1
  • Nar Singh Chauhan
    • 2
  • Naveen Kumar
    • 1
    Email author
  1. 1.Department of ChemistryMaharshi Dayanand UniversityRohtakIndia
  2. 2.Department of Bio-ChemistryMaharshi Dayanand UniversityRohtakIndia

Personalised recommendations