Skip to main content
Log in

I-doped Bi2WO6 microflowers enhanced visible light photocatalytic activity for organic pollution degradation and NO removal

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Bi2WO6 is a widely used photocatalyst, which has a good visible light response owing to the narrow band gap. But in the process of photocatalytic reactions, the combination of electrons and holes has a significant effect on the photocatalytic activity. In this work, I-doped Bi2WO6 microflowers were prepared by a simple one-step hydrothermal method. The microflower has a large surface area, which can be conducive to the adsorption of pollutants, degrading Rhodamine B and removal of NO effectively. The structure, as well as optical properties of the I-doped Bi2WO6 microflowers have been characterized by a series of techniques such as X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), transmission electron microscope (TEM), and UV–vis diffuse reflectance spectroscopy. According to the results of UV–vis spectra, the I-doped Bi2WO6 microflowers are found demonstrating a significantly enhanced visible light absorption. The photocurrent and photoluminescence spectra indicate an increased separation rate for the I-doped Bi2WO6 photocatalyst of the photo-generated electron–hole pairs. Under visible-light irradiation, the S3 I-doped Bi2WO6 photocatalyst shows the photocatalytic efficiency about 97.6% and 50.0% for Rhodamine B and NO, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y.F. Jia, S.P. Li, J.Z. Gao, G.Q. Zhu, F.C. Zhang, X.J. Shi, Y. Huang, C.L. Liu, Highly efficient (BiO)2CO3-BiO2-x-graphene photocatalysts: Z-Scheme photocatalytic mechanism for their enhanced photocatalytic removal NO. Appl. Catal. B: Environ. 240, 241–252 (2019)

    Article  CAS  Google Scholar 

  2. P.V. Kamat, Photochemistry on nonreactive and reactive (semiconductor) surfaces. Chem. Rev. 93, 267–300 (1993)

    Article  CAS  Google Scholar 

  3. M. Hojamberdiev, K. Katsumata, K. Morita, S. Bilmes, N. Matsushita, K. Okada, One-step hydrothermal synthesis and photocatalytic performance of ZnWO4/Bi2WO6 composite photocatalysts for efficient degradation of acetaldehyde under UV light irradiation. Appl. Catal. A 457, 12–20 (2013)

    Article  CAS  Google Scholar 

  4. G.Q. Zhu, J. Liang, M. Hojamberdiev, S.A. Bilmes, X.M. Wei, P. Liu, J.P. Zhou, Ethylenediamine (EDA)—assisted hydrothermal synthesis of nitrogen-doped Bi2WO6 powders. Mater. Lett. 122, 216–219 (2014)

    Article  CAS  Google Scholar 

  5. L.B. Xiao, R.B. Lin, J. Wang, C. Cui, J.Y. Wang, Z.Q. Li, A novel hollow-hierarchical structured Bi2WO6 with enhanced photocatalytic activity for CO2 photoreduction. J. Colloid Interface Sci. 523, 151–158 (2018)

    Article  CAS  Google Scholar 

  6. K. Li, B. He, J.C. Liu, H.L. Zhang, R.R. Zhang, R.X. Liu, Y.F. Song, S.J. Zhang, Synergistic interaction of anions and cations in preparation of VPO catalysts promoted by polyoxometalate-ionic liquids. Appl. Catal. A-Gen. 582, 117106–117114 (2019)

    Article  CAS  Google Scholar 

  7. M. Afif, U. Sulaeman, A. Riapanitra, R. Andreas, S. Yin, Use of Mn doping to suppress defect sites in Ag3PO4: applications in photocatalysis. Appl. Surf. Sci. 466, 352–357 (2019)

    Article  CAS  Google Scholar 

  8. X.Y. Zhao, X. Chen, J.C. Hu, Composition-dependent dual halide anion-doped bismuth terephthalate hybrids for enhanced pollutants removal. Microporous Mesoporous Mater. 244, 284–290 (2017)

    Article  CAS  Google Scholar 

  9. K.S. Yang, Y. Dai, B.B. Huang, M.H. Whangbo, Density functional characterization of the band edges, the band gap states, and the preferred doping sites of halogen-doped TiO2. Chem. Mater. 20, 6528–6534 (2008)

    Article  CAS  Google Scholar 

  10. Q.J. Xiang, J.G. Yu, M. Jaroniec, Synergetic effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles. J. Am. Chem. Soc. 134, 6575–6578 (2012)

    Article  CAS  Google Scholar 

  11. A. Kubacka, M. Fernandez-Garcia, G. Colon, Advanced nanoarchitectures for solar photocatalytic applications. Chem. Rev. 112, 1555–1614 (2011)

    Article  Google Scholar 

  12. H.D. Li, W.J. Li, F.Z. Wang, X.T. Liu, C.J. Ren, Fabrication of two lanthanides co-doped Bi2MoO6 photocatalyst: selection, design and mechanism of Ln1/Ln2 redox couple for enhancing photocatalytic activity. Appl. Catal. B: Environ. 217, 378–387 (2017)

    Article  CAS  Google Scholar 

  13. C. Zhang, Y.F. Zhu, Synthesis of square Bi2WO6 nanoplates as High-activity visible-light-driven photocatalysts. Chem. Mater. 17, 3537–3545 (2005)

    Article  CAS  Google Scholar 

  14. C.J. Zhu, Y.Q. Liu, H.S. Cao, J.W. Sun, Q. Xu, L.P. Wang, Insight into the influence of morphology of Bi2WO6 for photocatalytic degradation of VOCs under visible light. Colloids Surf. A 568, 327–333 (2019)

    Article  CAS  Google Scholar 

  15. M. Hojamberdiev, Z.C. Kadirova, Y. Makinose, G.Q. Zhu, S. Emin, N. Matsushita, M. Hasegawa, K. Okada, Involving CeVO4 in improving the photocatalytic activity of a Bi2WO6/allophane composite for the degradation of gaseous acetaldehyde under visible light. Colloid. Surface. A 529, 600–612 (2017)

    Article  CAS  Google Scholar 

  16. H.G. Sun, Z.X. Tian, G.L. Zhou, J.M. Zhang, P. Li, Exploring the effects of crystal facet in Bi2WO6/BiOCl heterostructures on photocatalytic properties: a first-principles theoretical study. Appl. Surf. Sci. 469, 125–134 (2019)

    Article  CAS  Google Scholar 

  17. S. Jonjana, A. Phuruangrat, S. Thongtem, T. Thongtem, Synthesis, characterization and photocatalysis of heterostructure AgBr/Bi2WO6 nanocomposites. Mater. Lett. 216, 92–96 (2018)

    Article  CAS  Google Scholar 

  18. A. Phuruangrat, P. Dumrongrojthanath, S. Thongtem, T. Thongtem, Hydrothermal synthesis of I-doped Bi2WO6 for using as a visible-light-driven photocatalyst. Mater. Lett. 224, 67–70 (2018)

    Article  CAS  Google Scholar 

  19. X.M. Gao, F. Fu, W.H. Li, 3D hierarchical microspheres of Cu-doped Bi2WO6: synthesis, characterization, and enhanced photocatalytic activity. J. Mater. Eng. Perform. 23, 4342–4349 (2014)

    Article  CAS  Google Scholar 

  20. A. Kaur, S.K. Kansal, Bi2WO6 nanocuboids: an efficient visible light active photocatalyst for the degradation of levofloxacin drug in aqueous phase. Chem. Eng. J. 302, 194–203 (2016)

    Article  CAS  Google Scholar 

  21. G.H. He, G.L. He, A.J. Li, X. Li, X.J. Wang, Y.P. Fang, Y.H. Xu, Synthesis and visible light photocatalytic behavior of WO3 (core)/Bi2WO6 (shell). J. Mol. Catal. A: Chem. 385, 106–111 (2014)

    Article  CAS  Google Scholar 

  22. Y. Lu, K. Zhao, Y. Zhao, S. Zhu, X. Yuan, M. Huo, Y. Zhang, Y. Qiu, Bi2WO6/TiO2/Pt nanojunction system: a UV–vis light responsive photocatalyst with high photocatalytic performance. Colloids Surf. A 481, 252–260 (2015)

    Article  CAS  Google Scholar 

  23. P. Ju, P. Wang, B. Li, H. Fan, S.Y. Ai, D. Zhang, Y. Wang, A novel calcined Bi2WO6/BiVO4 heterojunction photocatalyst with highly enhanced photocatalytic activity. Chem. Eng. J. 236, 430–437 (2014)

    Article  CAS  Google Scholar 

  24. J.Q. Yan, G.J. Wu, N.J. Guan, L.D. Li, Nb2O5/TiO2 heterojunctions: synthesis strategy and photocatalytic activity. Appl. Catal. B: Environ. 152–153, 280–288 (2014)

    Article  Google Scholar 

  25. F. Duan, Y. Zheng, M.Q. Chen, Flowerlike PtCl4/Bi2WO6 composite photocatalyst with enhanced visible-light-induced photocatalytic activity. Appl. Surf. Sci. 257, 1972–1978 (2011)

    Article  CAS  Google Scholar 

  26. L. Wang, Y. Cai, L.Y. Song, W.Y. Nie, Y.F. Zhou, P.P. Chen, High efficient photocatalyst of spherical TiO2 particles synthesized by a sol-gel method modified with glycol Colloids. Surf. A Physicochem. Eng. Aspects 461, 195–201 (2014)

    Article  CAS  Google Scholar 

  27. N. Pugazhenthiran, P. Sathishkumar, S. Murugesan, S. Anandan, Effective degradation of acid orange 10 by catalytic ozonation in the presence of Au-Bi2O3 nanoparticles. Chem. Eng. J. 168, 1227–1233 (2011)

    Article  CAS  Google Scholar 

  28. G.Q. Zhu, M. Hojamberdiev, S.L. Zhang, S.T.U. Din, W. Yang, Enhancing visible-light-induced photocatalytic activity of BiOI microspheres for NO removal by synchronous coupling with Bi metal and graphene. Appl. Surf. Sci. 467–468, 968–978 (2019)

    Article  Google Scholar 

  29. H. Wang, J.M. Song, H. Zhang, F. Gao, S.J. Zhao, H.Q. Hu, Controlled synthesis of three-dimensional hierarchical Bi2WO6 microspheres with optimum photocatalytic activity. Mater. Res. Bull. 47, 315–320 (2012)

    Article  CAS  Google Scholar 

  30. L.S. Zhang, W.Z. Wang, Z.G. Chen, L. Zhou, H.L. Xu, W. Zhu, Fabrication of flower-like Bi2WO6 superstructures as high performance visible-light driven photocatalysts. J. Mater. Chem. 17, 2526–2532 (2007)

    Article  CAS  Google Scholar 

  31. F. Rao, G.Q. Zhu, M. Hojamberdiev, W.B. Zhang, S.P. Li, J.Z. Gao, F.C. Zhang, Y.H. Huang, Y. Huang, Uniform Zn2+-doped BiOI microspheres assembled by ultrathin nanosheets with tunable oxygen vacancies for super-stable removal of NO. J. Phys. Chem. C 123, 16268–16280 (2019)

    Article  CAS  Google Scholar 

  32. W.J. He, Y.J. Sun, G.M. Jiang, H.W. Huang, X.M. Zhang, F. Dong, Activation of amorphous Bi2WO6 with synchronous Bi metal and Bi2O3 coupling: photocatalysis mechanism and reaction pathway. Appl. Catal. B-Environ. 232, 340–347 (2018)

    Article  CAS  Google Scholar 

  33. W.C. Huo, X.A. Dong, J.Y. Li, M. Liu, X.Y. Liu, Y.X. Zhang, F. Dong, Synthesis of Bi2WO6 with gradient oxygen vacancies for highly photocatalytic NO oxidation and mechanism study. Chem. Eng. J. 361, 129–138 (2019)

    Article  CAS  Google Scholar 

  34. Y.L. Wei, X.M. Wei, S.S. Guo, Y.H. Huang, G.Q. Zhu, J.M. Zhang, The effects of Br dopant on the photo-catalytic properties of Bi2WO6. Mater. Sci. Eng., B 206, 79–84 (2016)

    Article  CAS  Google Scholar 

  35. G.Q. Zhu, S.P. Li, J.Z. Gao, F.C. Zhang, C.L. Liu, Q.Z. Wang, M. Hojamberdiev, Constructing a 2D/2D Bi2O2CO0/Bi4O5Br2 heterostructure as a direct Z-scheme photocatalyst with enhanced photocatalytic activity for NOx removal. Appl. Surf. Sci. 493, 913–925 (2019)

    Article  CAS  Google Scholar 

  36. J.D. Hu, D.Y. Chen, Z. Mo, N.J. Li, Q.F. Xu, H. Li, J.H. He, H. Xu, J.M. Lu, Z-Scheme 2D/2D heterojunction of black phosphorus/monolayer Bi2WO6 nanosheets with enhanced photocatalytic activities. Angew. Chem. Int. Edit. 131(7), 2095–2099 (2019)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Student’s Platform for Innovation and Entrepreneurship Training Program Foundation (No. 1301070014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gangqiang Zhu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, X., Zhu, G., Zhang, R. et al. I-doped Bi2WO6 microflowers enhanced visible light photocatalytic activity for organic pollution degradation and NO removal. J Mater Sci: Mater Electron 30, 17787–17797 (2019). https://doi.org/10.1007/s10854-019-02130-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02130-1

Navigation