Skip to main content
Log in

Synthesis of cobalt ferrite and simultaneous determination of ascorbic acid, acetaminophen and caffeine by voltammetric method using cobalt ferrite modified electrode

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present article, the synthesis of spherical hollow cobalt ferrite and application as an electrode modifier were demonstrated. The synthesis of cobalt ferrite was conducted using carbonaceous microspheres prepared from a glucose solution as a sacrificial template, followed by subsequent heat treatment. The Fe/Co molar ratio in cobalt ferrite depends significantly on the initial Fe/Co molar ratio. The Fe/Co molar ratio as 1/1 could provide the stoichiometric cobalt ferrite (CoFe2O4) with a hollow sphere structure and large saturation magnetization. The simultaneous quantification of ascorbic acid (ASA), acetaminophen (ACE), and caffeine (CAF) was performed utilizing the differential pulse anodic stripping voltammetric method with CoFe2O4 modified glassy carbon electrode. The detection limits in the linear range of 0.2–4.4 µM are 0.313, 0.267, and 0.226 µM for ASA, ACE, and CAF, respectively. This proposed method enables the simultaneous detection of ASA, ACE, and CAF in pharmaceutical formulations and beverage samples. The determined concentration of the analytes is comparable with that obtained with HPLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. S.S. Gropper, J.L. Smith, Advanced Nutrition and Human Metabolism (Cengage Learning, Boston, 2012)

    Google Scholar 

  2. A. Nehlig, J.-L. Daval, G. Debry, Caffeine and the central nervous system: mechanisms of action, biochemical, metabolic and psychostimulant effects. Brain Res. Rev. 17, 139–170 (1992)

    Article  CAS  Google Scholar 

  3. P. Association, Diagnostic and Statistical Manual of Mental Disorders (Author, Washington, DC, 2000)

    Google Scholar 

  4. V.K. Gupta, A.K. Jain, S.K. Shoora, Multiwall carbon nanotube modified glassy carbon electrode as voltammetric sensor for the simultaneous determination of ascorbic acid and caffeine. Electrochim. Acta 93, 248–253 (2013)

    Article  CAS  Google Scholar 

  5. J. Wang, M. Li, Z. Shi, N. Li, Z. Gu, Direct electrochemistry of cytochrome c at a glassy carbon electrode modified with single-wall carbon nanotubes. Anal. Chem. 74, 1993–1997 (2002)

    Article  CAS  Google Scholar 

  6. A. Afkhami, H. Khoshsafar, H. Bagheri, T. Madrakian, Facile simultaneous electrochemical determination of codeine and acetaminophen in pharmaceutical samples and biological fluids by graphene–CoFe2O4 nancomposite modified carbon paste electrode. Sens. Actuators B 203, 909–918 (2014)

    Article  CAS  Google Scholar 

  7. M. Mazloum-Ardakani, M.A. Sheikh-Mohseni, M. Abdollahi-Alibeik, A. Benvidi, Application of nanosized MCM-41 to fabrication of a nanostructured electrochemical sensor for the simultaneous determination of levodopa and carbidopa. Analyst 137, 1950–1955 (2012)

    Article  CAS  Google Scholar 

  8. I. Cesarino, G. Marino, J. do Rosário Matos, E.T.G. Cavalheiro, Evaluation of a carbon paste electrode modified with organofunctionalised SBA-15 nanostructured silica in the simultaneous determination of divalent lead, copper and mercury ions. Talanta 75, 15–21 (2008)

    Article  CAS  Google Scholar 

  9. M.-J. Song, S.W. Hwang, D. Whang, Non-enzymatic electrochemical CuO nanoflowers sensor for hydrogen peroxide detection. Talanta 80, 1648–1652 (2010)

    Article  CAS  Google Scholar 

  10. S. Thiagarajan, T.H. Tsai, S.-M. Chen, Electrochemical fabrication of nano manganese oxide modified electrode for the detection of H2O2. Int. J. Electrochem. Sci. 6, 2235–2245 (2011)

    CAS  Google Scholar 

  11. J. Zhou, X. Li, L. Yang, S. Yan, M. Wang, D. Cheng, Q. Chen, Y. Dong, P. Liu, W. Cai, The Cu-MOF-199/single-walled carbon nanotubes modified electrode for simultaneous determination of hydroquinone and catechol with extended linear ranges and lower detection limits. Anal. Chim. Acta 899, 57–65 (2015)

    Article  CAS  Google Scholar 

  12. Y. Jin, C. Ge, X. Li, M. Zhang, G. Xu, D. Li, A sensitive electrochemical sensor based on ZIF-8–acetylene black–chitosan nanocomposites for rutin detection. RSC Adv. 8, 32740–32746 (2018)

    Article  CAS  Google Scholar 

  13. R.N. Goyal, S.P. Singh, Voltammetric determination of paracetamol at C60-modified glassy carbon electrode. Electrochim. Acta 51, 3008–3012 (2006)

    Article  CAS  Google Scholar 

  14. P.R. Dalmasso, M.L. Pedano, G.A. Rivas, Electrochemical determination of ascorbic acid and paracetamol in pharmaceutical formulations using a glassy carbon electrode modified with multi-wall carbon nanotubes dispersed in polyhistidine. Sens. Actuators B 173, 732–736 (2012)

    Article  CAS  Google Scholar 

  15. O.-W. Lau, S.-F. Luk, Y.-M. Cheung, Simultaneous determination of ascorbic acid, caffeine and paracetamol in drug formulations by differential-pulse voltammetry using a glassy carbon electrode. Analyst 114, 1047–1051 (1989)

    Article  CAS  Google Scholar 

  16. D.M. Fernandes, N. Silva, C. Pereira, C. Moura, J.M.C.S. Magalhães, B. Bachiller-Baeza, I. Rodríguez-Ramos, A. Guerrero-Ruiz, C. Delerue-Matos, C. Freire, MnFe2O4@ CNT-N as novel electrochemical nanosensor for determination of caffeine, acetaminophen and ascorbic acid. Sens. Actuators B 218, 128–136 (2015)

    Article  CAS  Google Scholar 

  17. Z.M. Khoshhesab, Simultaneous electrochemical determination of acetaminophen, caffeine and ascorbic acid using a new electrochemical sensor based on CuO–graphene nanocomposite. RSC Adv. 5, 95140–95148 (2015)

    Article  CAS  Google Scholar 

  18. F. Liu, S. Laurent, A. Roch, L. Vander Elst, R.N. Muller, Size-controlled synthesis of CoFe2 O4 nanoparticles potential contrast agent for MRI and investigation on their size-dependent magnetic properties. J. Nanomater. 2013, 127 (2013)

    Google Scholar 

  19. H. Wei, D. Ding, X. Yan, J. Guo, L. Shao, H. Chen, L. Sun, H.A. Colorado, S. Wei, Z. Guo, Tungsten trioxide/zinc tungstate bilayers: electrochromic behaviors, energy storage and electron transfer. Electrochim. Acta 132, 58–66 (2014)

    Article  CAS  Google Scholar 

  20. P. Lavela, J.L. Tirado, CoFe2O4 and NiFe2O4 synthesized by sol–gel procedures for their use as anode materials for Li ion batteries. J. Power Sources 172, 379–387 (2007)

    Article  CAS  Google Scholar 

  21. M. Houshiar, F. Zebhi, Z.J. Razi, A. Alidoust, Z. Askari, Synthesis of cobalt ferrite (CoFe2O4) nanoparticles using combustion, coprecipitation, and precipitation methods: a comparison study of size, structural, and magnetic properties. J. Magn. Magn. Mater. 371, 43–48 (2014)

    Article  CAS  Google Scholar 

  22. P. Laokul, S. Arthan, S. Maensiri, E. Swatsitang, Magnetic and optical properties of CoFe2 O4 nanoparticles synthesized by reverse micelle microemulsion method. J. Supercond. Nov. Magn. 28, 2483–2489 (2015)

    Article  CAS  Google Scholar 

  23. W. Baaziz, B.P. Pichon, Y. Liu, J.-M. Grenèche, C. Ulhaq-Bouillet, E. Terrier, N. Bergeard, V. Halté, C. Boeglin, F. Choueikani, Tuning of synthesis conditions by thermal decomposition toward core-shell CoxFe1–xO@ Co y Fe3–y O4 and CoFe2O4 nanoparticles with spherical and cubic shapes. Chem. Mater. 26, 5063–5073 (2014)

    Article  CAS  Google Scholar 

  24. I. Sharifi, H. Shokrollahi, M.M. Doroodmand, R. Safi, Magnetic and structural studies on CoFe2O4 nanoparticles synthesized by co-precipitation, normal micelles and reverse micelles methods. J. Magn. Magn. Mater. 324, 1854–1861 (2012)

    Article  CAS  Google Scholar 

  25. H. Yang, X. Zhang, A. Tang, G. Qiu, Cobalt ferrite nanoparticles prepared by coprecipitation/mechanochemical treatment. Chem. Lett. 33, 826–827 (2004)

    Article  CAS  Google Scholar 

  26. Z. Chen, L. Gao, Synthesis and magnetic properties of CoFe2O4 nanoparticles by using PEG as surfactant additive. Mater. Sci. Eng. B 141, 82–86 (2007)

    Article  CAS  Google Scholar 

  27. M.M. El-Okr, M.A. Salem, M.S. Salim, R.M. El-Okr, M. Ashoush, H.M. Talaat, Synthesis of cobalt ferrite nano-particles and their magnetic characterization. J. Magn. Magn. Mater. 323, 920–926 (2011)

    Article  CAS  Google Scholar 

  28. D. Wang, C. Song, Z. Hu, X. Fu, Fabrication of hollow spheres and thin films of nickel hydroxide and nickel oxide with hierarchical structures. J. Phys. Chem. B 109, 1125–1129 (2005)

    Google Scholar 

  29. X. Peng, Green chemical approaches toward high-quality semiconductor nanocrystals. Chem. Eur. J. 8, 334–339 (2002)

    Article  CAS  Google Scholar 

  30. X. Sun, Y. Li, Ga2O3 and GaN semiconductor hollow spheres. Angew. Chem. 116, 3915–3919 (2004)

    Article  Google Scholar 

  31. X. Sun, J. Liu, Y. Li, Use of carbonaceous polysaccharide microspheres as templates for fabricating metal oxide hollow spheres. Chem. Eur. J. 12, 2039–2047 (2006)

    Article  CAS  Google Scholar 

  32. N.H. Phong, T.T.T. Toan, M.X. Tinh, T.N. Tuyen, T.X. Mau, D.Q. Khieu, Simultaneous voltammetric determination of ascorbic acid, paracetamol, and caffeine using electrochemically reduced graphene-oxide-modified electrode. J. Nanomater. 2018, 1–15 (2018)

    Article  Google Scholar 

  33. X. Sun, Y. Li, Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. 116, 607–611 (2004)

    Article  Google Scholar 

  34. T. Dippong, E.A. Levei, O. Cadar, Preparation of CoFe2O4/SiO2 nanocomposites at low temperatures using short chain diols. J. Chem. 2017, 1–11 (2017)

    Article  Google Scholar 

  35. M.Y. Nassar, T.Y. Mohamed, I.S. Ahmed, N.M. Mohamed, M. Khatab, Hydrothermally synthesized Co3O4, α-Fe2O 3, and CoFe2O4 nanostructures: efficient nano-adsorbents for the removal of orange G textile dye from aqueous media. J. Inorg. Organomet. Polym. Mater. 27, 1526–1537 (2017)

    Article  CAS  Google Scholar 

  36. T. Sakaki, M. Shibata, T. Miki, H. Hirosue, N. Hayashi, Reaction model of cellulose decomposition in near-critical water and fermentation of products. Bioresour. Technol. 58, 197–202 (1996)

    Article  CAS  Google Scholar 

  37. G.C.A. Luijkx, F. van Rantwijk, H. van Bekkum, M.J. Antal Jr., The role of deoxyhexonic acids in the hydrothermal decarboxylation of carbohydrates. Carbohydr. Res. 272, 191–202 (1995)

    Article  CAS  Google Scholar 

  38. D. Barreca, C. Massignan, S. Daolio, M. Fabrizio, C. Piccirillo, L. Armelao, E. Tondello, Composition and microstructure of cobalt oxide thin films obtained from a novel cobalt (II) precursor by chemical vapor deposition. Chem. Mater. 13, 588–593 (2001)

    Article  CAS  Google Scholar 

  39. T. Yamashita, P. Hayes, Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials. Appl. Surf. Sci. 254, 2441–2449 (2008)

    Article  CAS  Google Scholar 

  40. Y. Yang, H. Dong, Y. Wang, C. He, Y. Wang, X. Zhang, Synthesis of octahedral like Cu-BTC derivatives derived from MOF calcined under different atmosphere for application in CO oxidation. J. Solid State Chem. 258, 582–587 (2018)

    Article  CAS  Google Scholar 

  41. X. Zhang, H. Li, X. Lv, J. Xu, Y. Wang, C. He, N. Liu, Y. Yang, Y. Wang, Facile Synthesis of Highly Efficient Amorphous Mn-MIL-100 Catalysts: formation Mechanism and Structure Changes during Application in CO Oxidation. Chem.: Eur. J. 24, 8822–8832 (2018)

    Article  CAS  Google Scholar 

  42. K. Dukenbayev, I.V. Korolkov, D.I. Tishkevich, A.L. Kozlovskiy, S.V. Trukhanov, Y.G. Gorin, E.E. Shumskaya, E.Y. Kaniukov, D.A. Vinnik, M.V. Zdorovets, Fe3O4 nanoparticles for complex targeted delivery and boron neutron capture therapy. Nanomaterials 9, 494 (2019)

    Article  CAS  Google Scholar 

  43. D.Z. Tulebayeva, A.L. Kozlovskiy, I.V. Korolkov, Y.G. Gorin, A.V. Kazantsev, L. Abylgazina, E.E. Shumskaya, E.Y. Kaniukov, M.V. Zdorovets, Modification of Fe3O4 nanoparticles with carboranes. Mater. Res. Express 5, 105011 (2018)

    Article  Google Scholar 

  44. Y.P. Chang, C.L. Ren, J.C. Qu, X.G. Chen, Preparation and characterization of Fe3O4/graphene nanocomposite and investigation of its adsorption performance for aniline and p-chloroaniline. Appl. Surf. Sci. 261, 504–509 (2012)

    Article  CAS  Google Scholar 

  45. N.A. Kalanda, G.G. Gorokh, M.V. Yarmolich, A.A. Lozovenko, E.Y. Kanyukov, Magnetic and magnetoresistive properties of Al2O3–Sr2FeMoO6–δ–Al2O3 nanoheterostructures. Phys. Solid State 58, 351–359 (2016)

    Article  CAS  Google Scholar 

  46. S. Yang, L. Qu, R. Yang, J. Li, L. Yu, Modified glassy carbon electrode with Nafion/MWNTs as a sensitive voltammetric sensor for the determination of paeonol in pharmaceutical and biological samples. J. Appl. Electrochem. 40, 1371–1378 (2010)

    Article  CAS  Google Scholar 

  47. J. Xu, F. Shang, J.H.T. Luong, K.M. Razeeb, J.D. Glennon, Direct electrochemistry of horseradish peroxidase immobilized on a monolayer modified nanowire array electrode. Biosens. Bioelectron. 25, 1313–1318 (2010)

    Article  CAS  Google Scholar 

  48. A.J. Bard, L.R. Faulkner, J. Leddy, C.G. Zoski, Electrochemical Methods: Fundamentals and Applications (Wiley, New York, 1980)

    Google Scholar 

  49. J. Soleymani, M. Hasanzadeh, N. Shadjou, M.K. Jafari, J.V. Gharamaleki, M. Yadollahi, A. Jouyban, A new kinetic–mechanistic approach to elucidate electrooxidation of doxorubicin hydrochloride in unprocessed human fluids using magnetic graphene based nanocomposite modified glassy carbon electrode. Mater. Sci. Eng. C 61, 638–650 (2016)

    Article  CAS  Google Scholar 

  50. E. Laviron, General expression of the linear potential sweep voltammogram in the case of diffusionless electrochemical systems. Electroanalysis 101, 19–28 (1979)

    Article  CAS  Google Scholar 

  51. M. Hasanzadeh, N. Shadjou, (Fe3O4)–graphene oxide–SO3H as a new magnetic nanocatalyst for electro-oxidation and determination of selected parabens. J. Nanosci. Nanotechnol. 13, 4909–4916 (2013)

    Article  CAS  Google Scholar 

  52. L. Švorc, P. Tomčík, J. Svítková, M. Rievaj, D. Bustin, Voltammetric determination of caffeine in beverage samples on bare boron-doped diamond electrode. Food Chem. 135, 1198–1204 (2012)

    Article  Google Scholar 

  53. M. Amiri-Aref, J.B. Raoof, R. Ojani, A highly sensitive electrochemical sensor for simultaneous voltammetric determination of noradrenaline, acetaminophen, xanthine and caffeine based on a flavonoid nanostructured modified glassy carbon electrode. Sens. Actuators B 192, 634–641 (2014)

    Article  CAS  Google Scholar 

  54. M. Tefera, A. Geto, M. Tessema, S. Admassie, Simultaneous determination of caffeine and paracetamol by square wave voltammetry at poly(4-amino-3-hydroxynaphthalene sulfonic acid)-modified glassy carbon electrode. Food Chem. 210, 156–162 (2016)

    Article  CAS  Google Scholar 

  55. M.H. Pournaghi-Azar, A. Saadatirad, Simultaneous determination of paracetamol, ascorbic acid and codeine by differential pulse voltammetry on the aluminum electrode modified by thin layer of palladium. Electroanalysis 22, 1592–1598 (2010)

    CAS  Google Scholar 

Download references

Acknowledgements

This research was sponsored by Hue University under Decision No. 1208/QĐ-DHH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinh Quang Khieu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thu, P.T.K., Trinh, N.D., Hoan, N.T.V. et al. Synthesis of cobalt ferrite and simultaneous determination of ascorbic acid, acetaminophen and caffeine by voltammetric method using cobalt ferrite modified electrode. J Mater Sci: Mater Electron 30, 17245–17261 (2019). https://doi.org/10.1007/s10854-019-02072-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02072-8

Navigation