Skip to main content
Log in

Effect of acceptor Na1+ doping on the properties of perovskite SrCeO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The aim of this work is to study the effect of Na doping on the structural, microstructural and electrical properties of SrCeO3. With this goal, SrCe1−xNaxO3 (x = 0, 0.02, 0.04, 0.06 and 0.10) polycrystalline ceramics have been prepared using the solid-state route. The phase and structure of the synthesized samples were confirmed using X-ray diffraction technique. Rietveld refinement of the XRD profile confirmed that all the samples have orthorhombic structure and space group Pnma. Further, the purity of the synthesized samples was checked using Raman and Fourier transformation infrared (FTIR) spectroscopy techniques. The optical bandgap was calculated using UV–Vis technique, and the values were found 3.01 and 3.12 eV for pristine and Na doped samples. Scanning electron microscopic studies of fractured surfaces of the sintered pellets have indicated that dopant Na has played a significant role in grain growth. Grain size and morphology of Na doped samples is different from pristine SrCeO3. DC conductivity of Na doped samples is lower than undoped SrCeO3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. H. Iwahara, Solid State Ion. 28, 573–578 (1988)

    Article  Google Scholar 

  2. H. Iwahara, Y. Asakura, K. Katahira, M. Tanaka, Solid State Ion. 168, 299–310 (2004)

    Article  Google Scholar 

  3. H. Iwahara, Solid State Ion. 77, 289–298 (1995)

    Article  Google Scholar 

  4. T. Norby, Solid State Ion. 125, 1–11 (1999)

    Article  Google Scholar 

  5. N. Bonanos, Solid State Ion. 53, 967–974 (1992)

    Article  Google Scholar 

  6. K.D. Kreuer, Annu. Rev. Mater. Res. 33, 333–359 (2003)

    Article  Google Scholar 

  7. H. Iwahara, T. Esaka, H. Uchida, N. Maeda, Solid State Ion. 3, 359–363 (1981)

    Article  Google Scholar 

  8. H. Iwahara, H. Uchida, K. Ono, K. Ogaki, J. Electrochem. Soc. 135, 529–533 (1988)

    Article  Google Scholar 

  9. T. Yajima, H. Kazeoka, T. Yogo, H. Iwahara, Solid State Ion. 47, 271–275 (1991)

    Article  Google Scholar 

  10. Z. Tao, Q. Zhang, X. Xi, G. Hou, L. Bi, Electrochem. Commun. 72, 19–22 (2016)

    Article  Google Scholar 

  11. K. Leonard, Y.S. Lee, Y. Okuyama, K. Miyazaki, H. Matsumoto, Int. J. Hydrog. Energy 42, 3926–3937 (2017)

    Article  Google Scholar 

  12. N. Sammes, R. Phillips, A. Smirnova, J. Power Sources 134, 153–159 (2004)

    Article  Google Scholar 

  13. Y. Okuyama, K. Isa, Y.S. Lee, T. Sakai, H. Matsumoto, Solid State Ion. 275, 35–38 (2015)

    Article  Google Scholar 

  14. C. Zhang, S. Li, X. Liu, X. Zhao, D. He, H. Qiu, Q. Yu, S. Wang, L. Jiang, Int. J. Hydrog. Energy 38, 12921–12926 (2013)

    Article  Google Scholar 

  15. W. Xing, P.I. Dahl, L.V. Roaas, M.L. Fontaine, Y. Larring, P.P. Henriksen, R. Bredesen, J. Membr. Sci. 473, 327–332 (2015)

    Article  Google Scholar 

  16. N.I. Matskevich, T. Wolf, I.V. Vyazovkin, P. Adelmann, J. Alloys Compd. 628, 126–129 (2015)

    Article  Google Scholar 

  17. U.N. Shrivastava, K.L. Duncan, J.N. Chung, Int. J. Hydrog. Energy 37, 15350–15358 (2012)

    Article  Google Scholar 

  18. Wenhui Yuan, Chichi Xiao, Li Li, J. Alloys Compd. 616, 142–147 (2014)

    Article  Google Scholar 

  19. A. Shabanikia, M. Javanbakht, H. SalarAmoli, K. Hooshyari, M. Enhessari, Electrochim. Acta 154, 370–378 (2015)

    Article  Google Scholar 

  20. Q. Guan, H. Wang, H. Miao, L. Sheng, H. Li, Ceram. Int. 43, 9317–9321 (2017)

    Article  Google Scholar 

  21. L. Sun, H. Miao, H. Wang, Solid State Ion. 311, 41–45 (2017)

    Article  Google Scholar 

  22. J. Bera, S.K. Rout, Mater. Res. Bull. 40, 1187–1193 (2005)

    Article  Google Scholar 

  23. J.W. Kim, H.G. Lee, Thermal and carbothermic decomposition of Na2CO3 and Li2CO3. Metall. Mater. Trans. B 32(1), 17–24 (2001)

    Article  Google Scholar 

  24. G.C. Mather, M.S. Islam, Chem. Mater. 17, 1736–1744 (2005)

    Article  Google Scholar 

  25. M. Sahu, K. Krishnan, B.K. Nagar, M.K. Saxena, S. Dash, Thermochim. Acta 525, 167–176 (2011)

    Article  Google Scholar 

  26. A. Mineshige, S. Okada, K. Sakai, M. Kobune, S. Fujii, H. Matsumoto, T. Shimura, H. Iwahara, Z. Ogumi, Solid State Ion. 162, 41–45 (2003)

    Article  Google Scholar 

  27. M.J. Ansaree, S. Upadhyay, Ionics 21, 2825–2838 (2015)

    Article  Google Scholar 

  28. H. Shi, T. Hussain, R. Ahuja, T.W. Kang, W. Luo, Sci. Rep. 6, 31345 (2016)

    Article  Google Scholar 

  29. P.I. Dahl, R. Haugsrud, H.L. Lein, T. Grande, T. Norby, M.A. Einarsrud, J. Eur. Ceram. Soc. 27, 4461–4471 (2007)

    Article  Google Scholar 

  30. U. Kumar, M.J. Ansaree, S. Upadhyay, Process. Appl. Ceram. 11, 177–184 (2017)

    Article  Google Scholar 

  31. X. Yang, S. Liu, F. Lu, J. Xu, X. Kuang, J. Phys. Chem. C 120, 6416–6426 (2016)

    Article  Google Scholar 

  32. S. Chokkha, S. Kuharuangron, J. Metals Mater. Miner. 20, 55–59 (2010)

    Google Scholar 

  33. J.S.S.J. Ketzial, D. Radhika, A.S. Nesaraj, Int. J. Ind. Chem. 4, 18 (2013)

    Article  Google Scholar 

  34. I. Kosacki, J. Schoonman, M. Balkanski, Solid State Ion. 57, 345–351 (1992)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the Head, Department of Physics and Coordinator, Central Instrument Facility Centre (CIFC), IIT(BHU), Varanasi for providing the experimental facilities required for the characterization of the synthesized samples. Mr. Dharmendra Yadav, Mr. Upendra Kumar, and GurudeoNirala are thankful to the Ministry of Human Resource and Development (MHRD), Government of India for the financial support in terms of Senior Research Fellowship (SRF). We acknowledge Ashish Kumar Mall of IIT Kanpur, India for providing Raman facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shail Upadhyay.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yadav, D., Kumar, U., Nirala, G. et al. Effect of acceptor Na1+ doping on the properties of perovskite SrCeO3. J Mater Sci: Mater Electron 30, 15772–15785 (2019). https://doi.org/10.1007/s10854-019-01963-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01963-0

Navigation