Skip to main content
Log in

An attempt to co-deposit photovoltaic quality CuInSe2 thin films: effect of surfactant and deposition potential

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

CuInSe2 (CISe) thin films were prepared by single step electrodeposition technique using citrate-SDS electrolyte. Preliminary studies revealed that the initial deposition conditions have significant influence over the composition, film quality and the addition of SDS in the citrate electrolyte enhances adhesion, smoothness and eliminates multinuclear growth. To explore the capability of the citrate-sodium dodecyl sulfate (SDS) electrolyte, the CISe thin films deposited at various potentials were annealed at 300 °C in nitrogen atmosphere. The structural, morphological and compositional properties of the annealed CISe thin films were compared. Finally, CISe thin film deposited at − 0.65 V/SCE exhibiting the p-type electrical conductivity was confirmed by Mott–Schottky (M–S) and photoelectrochemical (PEC) studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.M.M. Basol, M. Pinarbasi, S. Aksu, J. Freitag, P. Gonzalez, T. Johnson, Y. Matus, B. Metin, M. Narasimhan, D. Nayak, G. Norsworthy, D. Soltz, J. Wang, T. Wang, H. Zolla, Status of electroplating based CIGS technology development, Conf. Rec. IEEE Photovolt. Spec.Conf., pp. 002310–002315 (2009)

  2. I.M. Dharmadasa, Advances in Thin-Film Solar Cells (Jenny Stanford Publishing, Boca Raton, 2018)

    Book  Google Scholar 

  3. D. Lincot, Electrodeposition of semiconductors. Thin Solid Films 487, 40–48 (2005). https://doi.org/10.1016/j.tsf.2005.01.032

    Article  Google Scholar 

  4. V.S. Saji, I.H. Choi, C.W. Lee, Progress in electrodeposited absorber layer for CuIn(1-x)GaxSe2(CIGS)solar cells. Sol. Energy 85, 2666–2678 (2011). https://doi.org/10.1016/j.solener.2011.08.003

    Article  Google Scholar 

  5. F. Oliva, C. Broussillou, M. Annibaliano, N. Frederich, P.P. Grand, A. Roussy, P. Collot, S. Bodnar, Formation mechanisms of Cu(In, Ga)Se2 solar cells prepared from electrodeposited precursors. Thin Solid Films 535, 127–132 (2013). https://doi.org/10.1016/J.TSF.2012.11.106

    Article  Google Scholar 

  6. R. Chandran, A. Mallik, Electrodeposition of near stoichiometric CuInSe 2 thin films for photovoltaic applications. IOP Conf. Ser. Mater. Sci. Eng. 338, 012018 (2018). https://doi.org/10.1088/1757-899X/338/1/012018

    Article  Google Scholar 

  7. V.S. Saji, C.-Y. Jung, C.-W. Lee, Electrodeposition of copper, selenium, indium, and gallium on molybdenum/surface oxides: unary, binary, ternary and quaternary compositions. J. Electrochem. Soc. 162, D465–D479 (2015). https://doi.org/10.1149/2.0451509jes

    Article  Google Scholar 

  8. L. Thouin, S. Massaccesi, S. Sanchez, J. Vedel, Formation of copper indium diselenide by electrodeposition. J. Electroanal. Chem. 374, 81–88 (1994). https://doi.org/10.1016/0022-0728(94)03352-8

    Article  Google Scholar 

  9. M.A. Frontini, M. Vázquez, Electrodeposition of CuInSe2 in citrate-containing electrolytes. J. Mater. Sci. 45, 2995–3000 (2010). https://doi.org/10.1007/s10853-010-4300-3

    Article  Google Scholar 

  10. Y.-S. Chiu, M.-T. Hsieh, C.-M. Chang, C.-S. Chen, T.-J. Whang, Single-step electrodeposition of CIS thin films with the complexing agent triethanolamine. Appl. Surf. Sci. 299, 52–57 (2014)

    Article  Google Scholar 

  11. M. Kemell, M. Ritala, H. Saloniemi, M. Leskelä, T. Sajavaara, E. Rauhala, One-step electrodeposition of Cu[sub 2 − x]Se and CuInSe[sub 2] thin films by the induced co-deposition mechanism. J. Electrochem. Soc. 147, 1080 (2000). https://doi.org/10.1149/1.1393317

    Article  Google Scholar 

  12. F. Long, W. Wang, J. Du, Z. Zou, CIS(CIGS) thin films prepared for solar cells by one-step electrodeposition in alcohol solution. J. Phys. 152, 012074 (2009). https://doi.org/10.1088/1742-6596/152/1/012074

    Google Scholar 

  13. J.S. Wellings, A.P. Samantilleke, S.N. Heavens, P. Warren, I.M. Dharmadasa, Electrodeposition of CuInSe2 from ethylene glycol at 150°C. Sol. Energy Mater. Sol. Cells 93, 1518–1523 (2009). https://doi.org/10.1016/j.solmat.2009.03.031

    Article  Google Scholar 

  14. M. Harati, J. Jia, K. Giffard, K. Pellarin, C. Hewson, D.A. Love, W.M. Lau, Z. Ding, One-pot electrodeposition, characterization and photoactivity of stoichiometric copper indium gallium diselenide (CIGS) thin films for solar cells. Phys. Chem. Chem. Phys. 12, 15282–15290 (2010). https://doi.org/10.1039/c0cp00586j

    Article  Google Scholar 

  15. Y. Lai, F. Liu, Z. Zhang, J. Liu, Y. Li, S. Kuang, J. Li, Y. Liu, Cyclic voltammetry study of electrodeposition of Cu (In, Ga) Se 2 thin films. Electrochim. Acta 54, 3004–3010 (2009)

    Article  Google Scholar 

  16. A.N. Molin, A.I. Dikusar, G.A. Kiosse, P.A. Petrenko, A.I. Sokolovsky, Y.G. Saltanovsky, Electrodeposition of CuInSe2 thin films from aqueous citric solutions I. Influence of potential and mass transfer rate on composition and structure of films. Thin Solid Films. 237, 66–71 (1994). https://doi.org/10.1016/0040-6090(94)90239-9

    Article  Google Scholar 

  17. L. Thouin, Electrodeposition and characterization of CulnSe[sub 2] thin films. J. Electrochem. Soc. 142, 2996 (1995). https://doi.org/10.1149/1.2048675

    Article  Google Scholar 

  18. R. Chandran, S.K. Panda, A. Mallik, A short review on the advancements in electroplating of CuInGaSe2 thin films. Mater. Renew. Sustain. Energy. 7, 6 (2018). https://doi.org/10.1007/s40243-018-0112-1

    Article  Google Scholar 

  19. A.H. Kashyout, E.-Z. Ahmed, T. Meaz, M. Nabil, M. Amer, (One-step) electrochemical deposition and characterization of CuInSe2 thin films. Alex. Eng. J. 53, 731–736 (2014). https://doi.org/10.1016/j.aej.2014.03.015

    Article  Google Scholar 

  20. L. Li, Y. Ma, G. Gao, W. Wang, S. Guo, J. You, J. Xie, Fabrication and characterization of copper–indium–diselenide (CuInSe2, CIS) thin film using one-step electro-deposition process. J. Alloys Compd. 658, 774–779 (2016). https://doi.org/10.1016/J.JALLCOM.2015.11.005

    Article  Google Scholar 

  21. R. Chandran, R. Pandey, A. Mallik, One step electrodeposition of CuInSe2 from an acidic bath: a reduction co-deposition study. Mater. Lett. 160, 275–277 (2015). https://doi.org/10.1016/J.MATLET.2015.07.132

    Article  Google Scholar 

  22. P.K. Hung, H.G. Cai, K.C. Huang, M.P. Houng, Effect of sodium dodecyl sulfate on surface roughness and nucleation mechanisms of electrodeposited CuInSe2 films. J. Electrochem. Soc. 160, D1–D5 (2012). https://doi.org/10.1149/2.027301jes

    Article  Google Scholar 

  23. R. Chandran, A.K. Behera, A. Mallik, A novel CISe/Ga-Se two–step stack approach to electrodeposit photovoltaic quality Cu-poor CuInGaSe2 thin films. Mater. Lett. 252, 244–247 (2019). https://doi.org/10.1016/J.MATLET.2019.05.102

    Article  Google Scholar 

  24. O. Kunz, J. Wong, J. Janssens, J. Bauer, O. Breitenstein, A.G. Aberle, Shunting problems due to sub-micron pinholes in evaporated solid-phase crystallised poly-Si thin-film solar cells on glass. Prog. Photovolt. Res. Appl. 17, 35–46 (2009). https://doi.org/10.1002/pip.866

    Article  Google Scholar 

  25. E. Chassaing, O. Ramdani, P.-P. Grand, J.-F. Guillemoles, D. Lincot, New insights in the electrodeposition mechanism of CuInSe2 thin films for solar cell applications. Phys. Status Solidi 5, 3445–3448 (2008). https://doi.org/10.1002/pssc.200779435

    Article  Google Scholar 

  26. S.H. Kwon, S.C. Park, B.T. Ahn, K.H. Yoon, J. Song, Effect of CuIn3Se5 layer thickness on CuInSe2 thin films and devices. Sol. Energy 64, 55–60 (1998). https://doi.org/10.1016/S0038-092X(98)00024-3

    Article  Google Scholar 

  27. A. Parretta, M.L. Addonizio, S. Loreti, L. Quercia, M.K. Jayaraj, An investigation on the growth of thin chalcopyrite CuInSe2 films by selenization of Cu-In alloys in a box. J. Cryst. Growth 183, 196–204 (1998). https://doi.org/10.1016/S0022-0248(97)00406-5

    Article  Google Scholar 

  28. T. Maeda, W. Gong, T. Wada, Crystallographic and optical properties and band structures of CuInSe2, CuIn3 Se5, and CuIn5 Se8 phases in Cu-poor Cu2 Se–In2 Se3 pseudo-binary system. Jpn. J. Appl. Phys. 55, 15 (2016). https://doi.org/10.7567/jjap.55.04es15

    Google Scholar 

  29. M. Kauk, M. Altosaar, J. Raudoja, A. Jagomägi, M. Danilson, T. Varema, The performance of CuInSe2 monograin layer solar cells with variable indium content. Thin Solid Films 515, 5880–5883 (2007). https://doi.org/10.1016/J.TSF.2006.12.082

    Article  Google Scholar 

  30. E.P.P. Zaretskaya, V.F.F. Gremenok, V. Riede, W. Schmitz, K. Bente, V.B.B. Zalesski, O.V.V. Ermakov, Raman spectroscopy of CuInSe2 thin films prepared by selenization. J. Phys. Chem. Solids 64, 1989–1993 (2003). https://doi.org/10.1016/S0022-3697(03)00216-6

    Article  Google Scholar 

  31. C.-M. Xu, X.-L. Xu, J. Xu, X.-J. Yang, J. Zuo, N. Kong, W.-H. Huang, H.-T. Liu, Composition dependence of the Raman A 1 mode and additional mode in tetragonal Cu–In–Se thin films. Semicond. Sci. Technol. 19, 1201–1206 (2004). https://doi.org/10.1088/0268-1242/19/10/006

    Article  Google Scholar 

  32. R. Chandran, A. Mallik, Facile, seedless and surfactant-free synthesis of ZnO nanostructures by wet chemical bath method and their characterization. Appl. Nanosci. 8, 1823–1830 (2018). https://doi.org/10.1007/s13204-018-0853-2

    Article  Google Scholar 

  33. J.A.M. AbuShama, S. Johnston, T. Moriarty, G. Teeter, K. Ramanathan, R. Noufi, Properties of ZnO/CdS/CuInSe2 solar cells with improved performance. Prog. Photovolt. Res. Appl. 12, 39–45 (2004). https://doi.org/10.1002/pip.537

    Article  Google Scholar 

  34. P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T.M.M. Friedlmeier, M. Powalla, Properties of Cu(In, Ga)Se2 solar cells with new record efficiencies up to 21.7%. Phys. Status Solidi 9, 28–31 (2015)

    Google Scholar 

  35. C. Guillén, J. Herrero, C. Guillén, J. Herrero, Structure, morphology and photoelectrochemical activity of CuInSe2 thin films as determined by the characteristics of evaporated metallic precursors. Sol. Energy Mater. Sol. Cells. 73, 141–149 (2002). https://doi.org/10.1016/s0927-0248(01)00119-2

    Article  Google Scholar 

Download references

Acknowledgements

The Authors would like to thank NIT-Rourkela, India for providing the infrastructure and experimental facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Mallik.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chandran, R., Behera, A.K. & Mallik, A. An attempt to co-deposit photovoltaic quality CuInSe2 thin films: effect of surfactant and deposition potential. J Mater Sci: Mater Electron 30, 15460–15468 (2019). https://doi.org/10.1007/s10854-019-01922-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01922-9

Navigation