Skip to main content
Log in

Electrical properties of perovskite YFeO3 based ceramics modified by Cu/Nb ions as negative temperature coefficient thermistors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cu/Nb doped YFeO3 ceramics were synthesized through wet chemical method followed by traditional ceramic sintering technology. The phase component and electrical properties of the ceramics were investigated. The XRD pattern shows that all the prepared ceramics have the orthorhombic perovskite structure with space group of Pnma. The XPS analysis demonstrates the existence of Fe2+ and Fe3+ in the ceramics. The temperature dependence of resistivity indicates that YFeO3-based materials have a characteristics of negative temperature coefficient (NTC) of resistivity. The room temperature resistivities (306–1.52 × 105 Ω cm) and temperature sensitivity B values (2693–5395 K) can be effectively adjusted by changing the contents of Cu- and Nb- ions. According to the analysis of complex impedance spectra at various temperatures, the NTC characteristic could be attributed to grain effect and grain boundary effect. The possible conduction mechanisms are propose to hopping conduction and band conduction in grain, and thermal activation transport of charge carries in grain boundary.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Z. Pan, D. Hu, Y. Zhang, J. Liu, B. Shen, J. Zhai, J. Mater. Chem. C 7, 4072–4078 (2019)

    Article  Google Scholar 

  2. K. Cho, S. Hur, S. Park, Appl. Phys. Lett. 110, 162905 (2017)

    Article  Google Scholar 

  3. B. Dhanalakshmi, P. Kollu, B.P. Rao, P.S.V. Subba Rao. Ceram. Int., 42, 2186-2197 (2016)

  4. R.N. Jadhav, S.N. Mathad, V. Puri, Ceram. Int. 38, 5181–5188 (2012)

    Article  Google Scholar 

  5. Q. Wang, W. Kong, J. Yao, A. Chang, Ceram. Int. 45, 378–383 (2019)

    Article  Google Scholar 

  6. C. Ma, H. Gao, J. Alloys Compd. 749, 853–858 (2018)

    Article  Google Scholar 

  7. Y. Liu, H. Zhang, W. Fu, Z. Yang, Z. Li, J. Mater. Sci.: Mater. Electron. 29, 18797–18806 (2018)

    Google Scholar 

  8. W. Fu, Z. Li, P. Li, Y. Zeng, H. Zhang, J. Mater. Sci.: Mater. Electron. 29, 11637–11645 (2018)

    Google Scholar 

  9. Y. Liu, S. Leng, S. Li, W. Fu, Z. Li, H. Zhang, Mater. Res. Express 5, 036307–036316 (2018)

    Article  Google Scholar 

  10. J. Guo, H. Zhang, Z. He, S. Li, Z. Li, J. Mater. Sci.: Mater. Electron. 29, 2491–2499 (2018)

    Google Scholar 

  11. M. Schubert, C. Münch, S. Schuurman, V. Poulain, J. Kita, R. Moos, J. Eur. Ceram. Soc. 38, 613–619 (2018)

    Article  Google Scholar 

  12. C. Ma, H. Gao, J. Mater. Sci.: Mater. Electron. 28, 6699–6703 (2017)

    Google Scholar 

  13. J. Wu, Z.M. Huang, W. Zhou, C. Ouyang, Y. Hou, Y.Q. Gao, R. Chen, J.H. Chu, J. Appl. Phys. 115, 113703 (2014)

    Article  Google Scholar 

  14. D.F. Li, S.X. Zhao, K. Xiong, H.Q. Bao, C.W. Nan, J. Alloys Compd. 582, 283–288 (2014)

    Article  Google Scholar 

  15. M. Guan, J. Yao, W. Kong, J. Wang, A. Chang, J. Mater. Sci.: Mater. Electron. 28, 5082–5086 (2017)

    Google Scholar 

  16. D.G. Wiendartun, Syarif. J. Phys. 812, 012120 (2017)

    Google Scholar 

  17. J. Zhang, W. Kong, A. Chang, J. Mater. Sci.: Mater. Electron. 29, 9613–9620 (2018)

    Google Scholar 

  18. Z. He, Z. Li, Q. Xiang, W. Yan, H. Zhang, Int. J. Appl. Ceram. Technol. 16, 160–169 (2019)

    Article  Google Scholar 

  19. Z. Yang, H. Zhang, Z. He, B. Li, Z. Li, J. Mater. Sci.: Mater. Electron. 30(3), 3088–3097 (2019). https://doi.org/10.1007/s10854-018-00588-z

    Google Scholar 

  20. J. Zhang, H. Zhang, B. Yang, Y. Zhang, Z. Li, J. Mater. Sci.: Mater. Electron. 27, 4935–4942 (2016)

    Google Scholar 

  21. B. Yang, H. Zhang, J. Zhang, X. Zhang, Z. Li, J. Mater. Sci.: Mater. Electron. 26, 10151–10158 (2015)

    Google Scholar 

  22. X. Sun, S. Leng, H. Zhang, Z. He, Z. Li, J. Alloys Compd. 763, 975–982 (2018)

    Article  Google Scholar 

  23. X. Sun, Z. Li, W. Fu, S. Chen, H. Zhang, J. Mater. Sci.: Mater. Electron. 29, 343–350 (2018)

    Google Scholar 

  24. T. Yang, B. Zhang, P. Luo, Q. Zhao, D. He, A. Chang, J. Mater. Sci.: Mater. Electron. 28, 7558–7561 (2017)

    Google Scholar 

  25. P. Luo, B. Zhang, Q. Zhao, D. He, A. Chang, J. Mater. Sci.: Mater. Electron. 28, 9265–9271 (2017)

    Google Scholar 

  26. H. Zhang, T. Liu, L. Zhao, H. Jiang, A. Chang, J. Mater. Sci.: Mater. Electron. 28, 14195–14201 (2017)

    Google Scholar 

  27. R. Zhang, C. Chen, K. Jin, L. Niu, H. Xing, B. Luo, J. Electroceram. 32, 187–191 (2013)

    Article  Google Scholar 

  28. M. Shang, C. Zhang, T. Zhang, L. Yuan, L. Ge, H. Yuan, S. Feng, Appl. Phys. Lett. 102, 062903 (2013)

    Article  Google Scholar 

  29. Y. Zhang, J. Feng, J. Xu, G. Chen, Z. Hong, Integr. Ferroelectr. 151, 108–115 (2014)

    Article  Google Scholar 

  30. M. Ismael, E. Elhaddad, D.H. Taffa, M. Wark, Catalysts 7, 326 (2017)

    Article  Google Scholar 

  31. C. Zhang, X. Wang, Z. Wang, H. Yan, H. Li, L. Li, Ceram. Int. 42, 19461–19465 (2016)

    Article  Google Scholar 

  32. A. Feteira, J. Am. Ceram. Soc. 92, 967–983 (2009)

    Article  Google Scholar 

  33. A.J. Bosman, H.J. van Daal, Adv. Phys. 19, 1–117 (1970)

    Article  Google Scholar 

  34. F.D. Morrison, D.J. Jung, J.F. Scott, J. Appl. Phys. 101, 094112 (2007)

    Article  Google Scholar 

  35. C.K. Suman, K. Prasad, R.N.P. Choudhary, Bull. Mater. Sci. 27, 547–553 (2004)

    Article  Google Scholar 

  36. S. Brahma, R.N.P. Choudhary, A.K. Thakur, Phys. B 355, 188–201 (2005)

    Article  Google Scholar 

  37. S.K. Rout, S. Parida, E. Sinha, P.K. Barhai, I.W. Kim, Curr. Appl. Phys. 10, 917–922 (2010)

    Article  Google Scholar 

  38. M.A.L. Nobre, S. Lanfredi, J. Appl. Phys. 93, 5576–5582 (2003)

    Article  Google Scholar 

  39. A.K. Jonscher, Nature 267, 673–679 (1997)

    Article  Google Scholar 

  40. K.M. Sangwan, N. Ahlawat, S. Rani, S. Rani, R.S. Kundu, Ceram. Int. 44, 10315–10321 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the research funding from the Hunan Wedid Materials Technology Co., Ltd. (Grant No. 738010241) and the National Natural Science Foundation of China (Grant No. 51767021).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., Li, Z., Shao, J. et al. Electrical properties of perovskite YFeO3 based ceramics modified by Cu/Nb ions as negative temperature coefficient thermistors. J Mater Sci: Mater Electron 30, 14528–14537 (2019). https://doi.org/10.1007/s10854-019-01824-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01824-w

Navigation