Advertisement

One-step hydrothermal synthesis and characterization of Cu-doped TiO2 nanoparticles/nanobucks/nanorods with enhanced photocatalytic performance under simulated solar light

  • Xiaodong Zhu
  • Guilan Wen
  • Hui Liu
  • Shihu Han
  • Shanhua ChenEmail author
  • Qingquan Kong
  • Wei FengEmail author
Article
  • 34 Downloads

Abstract

Cu–TiO2 and pure TiO2 were prepared by a facile one-step hydrothermal method and the obtained photocatalysts were tested by XRD, Raman, BET, XPS, DRS, PL, SEM and TEM, respectively. The results show that both pure and Cu–TiO2 consist of most rutile and a small amount of anatase, and present the morphology with nanoparticles, nanobucks and nanorods coexistence. The specific surface area and the separation rate of photogenerated electrons and holes increase after Cu doping. The photocatalytic experiment results illustrate that Cu–TiO2 exhibit better photocatalytic activity than pure TiO2 under simulated solar light. The enhanced photocatalytic performance is derived from the increased specific surface area providing more reaction sites and the conversion between Cu2+ and Cu+ increasing the separation rate of photogenerated pairs. 3%Cu–TiO2 shows the best photocatalytic activity owing to its largest specific surface area and lowest recombination rate. The degradation rate of RhB reaches 99.4% after 60 min, and the reaction rate constant is 0.076 min−1.

Notes

Acknowledgements

This work was supported by the Applied Basic Research Programs of Sichuan Province, China (Grant No. 2019JY0664), the Open Research Subject of Powder Metallurgy Engineering Technology Research Center of Sichuan Province, China (Grant No. SC-FMYJ2017-03) and the Training Program for Innovation of Chengdu University, China (Grant Nos. CDU-CX-2019015, CDU-CX-2019020).

References

  1. 1.
    Z. Fan, F. Meng, J. Gong, H. Li, Z. Ding, B. Ding, J. Mater. Sci. 27, 11866–11872 (2016)Google Scholar
  2. 2.
    M. Li, X. Zhang, Y. Liu, Y. Yang, Appl. Surf. Sci. 440, 1172–1180 (2018)CrossRefGoogle Scholar
  3. 3.
    X. Jiang, Y. Zhang, J. Jiang, Y. Rong, Y. Wang, Y. Wu, C. Pan, J. Phys. Chem. C 116, 22619–22624 (2012)CrossRefGoogle Scholar
  4. 4.
    J. Jalali, M. Mozammel, J. Mater. Sci. 28, 5336–5343 (2017)Google Scholar
  5. 5.
    Y. Chen, Q. Wu, C. Zhou, Q. Jin, Powder Technol. 322, 296–300 (2017)CrossRefGoogle Scholar
  6. 6.
    T. Ali, Y.M. Hunge, A. Venkatraman, J. Mater. Sci. 29, 1209–1215 (2018)Google Scholar
  7. 7.
    Y.M. Hunge, M.A. Mahadik, R.N. Bulakhe, S.P. Yadav, J.J. Shim, A.V. Moholkar, J. Mater. Sci. 28, 17976–17984 (2017)Google Scholar
  8. 8.
    H. Kooshkia, A. Sobhani-Nasabb, M. Eghbali-Aranic, F. Ahmadid, V. Amerie, M. Rahimi-Nasrabadi, Sep. Purif. Technol. 211, 873–881 (2019)CrossRefGoogle Scholar
  9. 9.
    S.M. Peymani-Motlagh, A. Sobhani-Nasab, M. Rostami, H. Sobati, M. Eghbali-Arani, M. Fasihi-Ramandi, M.R. Ganjali, J. Mater. Sci. 30, 6902–6909 (2019)Google Scholar
  10. 10.
    H. Yan, T. Zhao, X. Li, C. Hun, Ceram. Int. 41, 14204–14211 (2015)CrossRefGoogle Scholar
  11. 11.
    T. Aguilar, J. Navas, R. Alcántara, C.F. Lorenzo, J.J. Gallardo, G. Blanco, J.M. Calleja, Chem. Phys. Lett. 571, 49–53 (2013)CrossRefGoogle Scholar
  12. 12.
    S. Wang, K.K. Meng, L. Zhao, Q. Jiang, J.S. Lian, Ceram. Int. 40, 5107–5110 (2014)CrossRefGoogle Scholar
  13. 13.
    V. Krishnakumar, S. Boobas, J. Jayaprakash, M. Rajaboopathi, B. Han, M.L. Kultanen, J. Mater. Sci. 27, 7438–7447 (2016)Google Scholar
  14. 14.
    A. Shafei, S. Sheibani, Mater. Res. Bull. 110, 198–206 (2019)CrossRefGoogle Scholar
  15. 15.
    F. Gao, J. Jiang, L. Du, X. Liu, Y. Ding, Appl. Catal. A 568, 168–175 (2018)CrossRefGoogle Scholar
  16. 16.
    C. Liu, J. Wang, W. Chen, C. Dong, C. Li, Chem. Eng. J. 280, 588–596 (2015)CrossRefGoogle Scholar
  17. 17.
    F. Bensouici, M. Bououdina, A.A. Dakhel, R.T. Ighil, M. Tounane, A. Iratni, T. Souier, S. Liu, W. Cai, Appl. Surf. Sci. 395, 110–116 (2017)CrossRefGoogle Scholar
  18. 18.
    Y. Wang, Y. Wu, H. Yang, X. Xue, Z. Liu, Vacuum 131, 58–64 (2016)CrossRefGoogle Scholar
  19. 19.
    X. Fan, J. Fan, X. Hu, E. Liu, L. Kang, C. Tang, Y. Ma, H. Wu, Y. Li, Ceram. Int. 40, 15907–15917 (2014)CrossRefGoogle Scholar
  20. 20.
    N.A. Kyeremateng, V. Hornebecq, P. Knauth, T. Djenizian, Electrochim. Acta 62, 192–198 (2012)CrossRefGoogle Scholar
  21. 21.
    J. Ju, X. Chen, Y. Shi, J. Miao, D. Wu, Powder Technol. 237, 616–622 (2013)CrossRefGoogle Scholar
  22. 22.
    M.S. Jyothi, P. Laveena, R. Shwetharani, G.R. Balakrishna, Mater. Res. Bull. 74, 478–484 (2016)CrossRefGoogle Scholar
  23. 23.
    T.N. Ravishankar, G. Nagaraju, J. Dupont, Mater. Res. Bull. 78, 103–111 (2016)CrossRefGoogle Scholar
  24. 24.
    Y. Zhang, T. Wang, M. Zhou, Y. Wang, Z. Zhang, Ceram. Int. 43, 3118–3126 (2017)CrossRefGoogle Scholar
  25. 25.
    V.R. Bandi, C.M. Raghavan, B. Grandhe, S.S. Kim, K. Jang, D.S. Shin, S.S. Yi, J.H. Jeong, Thin Solid Films 547, 207–211 (2013)CrossRefGoogle Scholar
  26. 26.
    M.C. Wu, P.Y. Wu, T.H. Lin, T.F. Lin, Appl. Surf. Sci. 430, 390–398 (2018)CrossRefGoogle Scholar
  27. 27.
    H. Wang, W. Zhao, Y. Zhang, S. Zhang, Z. Wang, D. Zhao, Solid State Commun. 236, 27–31 (2016)CrossRefGoogle Scholar
  28. 28.
    Y. Jiao, M. Zhu, F. Chen, J. Zhang, Chinese. J. Catal. 34, 585–592 (2013)Google Scholar
  29. 29.
    L. Long, L. Wu, X. Yang, X. Li, J. Mater. Sci. Technol. 30, 765–769 (2014)CrossRefGoogle Scholar
  30. 30.
    R.A. Spurr, H. Myers, Anal. Chem. 29, 760–762 (1957)CrossRefGoogle Scholar
  31. 31.
    H. Li, L. Shen, K. Zhang, B. Sun, L. Ren, P. Qiao, K. Pan, L. Wang, W. Zhou, Appl. Catal. B 220, 111–117 (2018)CrossRefGoogle Scholar
  32. 32.
    T.T. Loan, N.A. Bang, V.H. Huong, N.N. Long, Opt. Mater. 69, 30–37 (2017)CrossRefGoogle Scholar
  33. 33.
    R. Bashiri, N.M. Mohamed, C.F. Kait, S. Sufian, M. Khatani, J. Environ. Chem. Eng. 5, 3207–3214 (2017)CrossRefGoogle Scholar
  34. 34.
    Y. Xu, J. Li, L. Yao, L. Li, P. Yang, N. Huang, Surf. Coat. Technol. 261, 436–441 (2015)CrossRefGoogle Scholar
  35. 35.
    C. Jia, H.S. Chen, P. Yang, J. Ind. Eng. Chem. 58, 278–289 (2018)CrossRefGoogle Scholar
  36. 36.
    J. Kong, C. Song, W. Zhang, Y. Xiong, M. Wan, Y. Wang, Superlattice Microst. 109, 579–587 (2017)CrossRefGoogle Scholar
  37. 37.
    H. Jiang, J. Xing, Z. Chen, F. Tian, Q. Cuan, X. Gong, H. Yang, Catal. Today 225, 18–23 (2014)CrossRefGoogle Scholar
  38. 38.
    M. Dorraj, M. Alizadeh, N.A. Sairi, W.J. Basirun, B.T. Goh, P.M. Woi, Y. Alias, Appl. Surf. Sci. 414, 251–261 (2017)CrossRefGoogle Scholar
  39. 39.
    J. Liu, L. Han, N. An, L. Xing, H. Ma, L. Cheng, J. Yang, Q. Zhang, Appl. Catal. B 202, 642–652 (2017)CrossRefGoogle Scholar
  40. 40.
    V. Moradi, M.B.G. Jun, A. Blackburn, R. Herring, Appl. Surf. Sci. 427, 791–799 (2018)CrossRefGoogle Scholar
  41. 41.
    X. Yang, S. Wang, H. Sun, X. Wang, J. Lian, Trans. Nonferrous Met. Soc. China 25, 504–509 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials and Chemistry & Chemical EngineeringChengdu University of TechnologyChengduChina
  2. 2.College of Mechanical EngineeringChengdu UniversityChengduChina

Personalised recommendations