Skip to main content
Log in

Ceramic based multi walled carbon nanotubes composites for highly efficient electromagnetic interference shielding

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, for the first time a highly conductive ceramic composite was made by incorporating multi-walled carbon nanotubes (MWCNT) in aluminum (Al)/alumina (Al2O3) matrix by a simple mechanical mixing technique. The different weight percentage (wt%) of MWCNT incorporated with Al/Al2O3 and their role on the electrical and electromagnetic interference shielding effectiveness (EMI SE) of ceramic composites were investigated. The high electrical conductivity of 280 S/m was achieved for MWCNT@Al/Al2O3 composites with 8 wt% MWCNT content which is 280 times higher than MWCNT@Al/Al2O3 composites (1 S/m) with 1 wt% MWCNT. In addition, MWCNT@Al/Al2O3 sample showed a high EMI SE value of 46 dB for the X-band which is capable to block more than 99.9% of incident electromagnetic radiation. The high electrical conductivity and EMI SE properties of MWCNTs embedded ceramic composite system has originated from the homogenous distribution of conducting carbon nanotubes to form a percolated network at low filler loading. This work presents a strategy to develop a conductive ceramic composites for the excellent EMI shielding and electrical properties by a simple mechanical mixing approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. F. Shahzad, M. Alhabeb, C.B. Hatter, B. Anasori, S.M. Hong, C.M. Koo, Y. Gogotsi, Electromagnetic interference shielding with 2D transition metal carbides (MXenes). Science 353(6304), 1137–1140 (2016)

    Article  Google Scholar 

  2. D.H. Park, Y.K. Lee, S.S. Park, C.S. Lee, S.H. Kim, W.N. Kim, Effects of hybrid fillers on the electrical conductivity and EMI shielding efficiency of polypropylene/conductive filler composites. Macromol. Res. 21(8), 905–910 (2013)

    Article  Google Scholar 

  3. D. Chung, Electromagnetic interference shielding effectiveness of carbon materials. Carbon 39(2), 279–285 (2001)

    Article  Google Scholar 

  4. G.A. Gelves, M.H. Al-Saleh, U. Sundararaj, Highly electrically conductive and high performance EMI shielding nanowire/polymer nanocomposites by miscible mixing and precipitation. J. Mater. Chem. 21(3), 829–836 (2011)

    Article  Google Scholar 

  5. M.H. Al-Saleh, G.A. Gelves, U. Sundararaj, Copper nanowire/polystyrene nanocomposites: lower percolation threshold and higher EMI shielding. Compos. A 42(1), 92–97 (2011)

    Article  Google Scholar 

  6. C. Guo, L. Zhou, J. Lv, Effects of expandable graphite and modified ammonium polyphosphate on the flame-retardant and mechanical properties of wood flour-polypropylene composites. Polym. Polym. Compos. 21(7), 449–456 (2013)

    Google Scholar 

  7. A. Sanmugam, D. Vikraman, K. Karuppasamy, J.Y. Lee, H.-S. Kim, Evaluation of the corrosion resistance properties of electroplated chitosan-Zn1−xCuxO composite thin films. Nanomaterials 7(12), 432 (2017)

    Article  Google Scholar 

  8. X. Yin, Y. Xue, L. Zhang, L. Cheng, Dielectric, electromagnetic absorption and interference shielding properties of porous yttria-stabilized zirconia/silicon carbide composites. Ceram. Int. 38(3), 2421–2427 (2012)

    Article  Google Scholar 

  9. R. Chandramohan, V. Dhanasekaran, R. Arumugam, K. Sundaram, J. Thirumalai, T. Mahalingam, Physical properties evaluation of annealed ZnAl2O4 alloy thin films. Digest J. Nanomater. Biostruct. 7(3), 1315–1325 (2012)

    Google Scholar 

  10. Y. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Novel carbon nanotube–polystyrene foam composites for electromagnetic interference shielding. Nano Lett. 5(11), 2131–2134 (2005)

    Article  Google Scholar 

  11. H.-B. Zhang, Q. Yan, W.-G. Zheng, Z. He, Z.-Z. Yu, Tough graphene–polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 3(3), 918–924 (2011)

    Article  Google Scholar 

  12. Y. Yang, M.C. Gupta, K.L. Dudley, R.W. Lawrence, Conductive carbon nanofiber–polymer foam structures. Adv. Mater. 17(16), 1999–2003 (2005)

    Article  Google Scholar 

  13. C. Xiang, Y. Pan, J. Guo, Electromagnetic interference shielding effectiveness of multiwalled carbon nanotube reinforced fused silica composites. Ceram. Int. 33(7), 1293–1297 (2007)

    Article  Google Scholar 

  14. W.-L. Song, M.-S. Cao, B. Wen, Z.-L. Hou, J. Cheng, J. Yuan, Synthesis of zinc oxide particles coated multiwalled carbon nanotubes: dielectric properties, electromagnetic interference shielding and microwave absorption. Mater. Res. Bull. 47(7), 1747–1754 (2012)

    Article  Google Scholar 

  15. M.H. Al-Saleh, U. Sundararaj, Electromagnetic interference shielding mechanisms of CNT/polymer composites. Carbon 47(7), 1738–1746 (2009)

    Article  Google Scholar 

  16. X. Luo, D. Chung, Electromagnetic interference shielding using continuous carbon-fiber carbon-matrix and polymer-matrix composites. Compos. B 30(3), 227–231 (1999)

    Article  Google Scholar 

  17. K. Ahmad, W. Pan, Dramatic effect of multiwalled carbon nanotubes on the electrical properties of alumina based ceramic nanocomposites. Compos. Sci. Technol. 69(7–8), 1016–1021 (2009)

    Article  Google Scholar 

  18. M. Mahmoodi, M. Arjmand, U. Sundararaj, S. Park, The electrical conductivity and electromagnetic interference shielding of injection molded multi-walled carbon nanotube/polystyrene composites. Carbon 50(4), 1455–1464 (2012)

    Article  Google Scholar 

  19. S. Varshney, A. Ohlan, V.K. Jain, V.P. Dutta, S.K. Dhawan, In situ synthesis of polypyrrole-γ-Fe2O3-Fly ash nanocomposites for protection against EMI pollution. Ind. Eng. Chem. Res. 53(37), 14282–14290 (2014)

    Article  Google Scholar 

  20. P. Xu, X. Han, C. Wang, H. Zhao, J. Wang, X. Wang, B. Zhang, Synthesis of electromagnetic functionalized barium ferrite nanoparticles embedded in polypyrrole. J. Phys. Chem. B 112(10), 2775–2781 (2008)

    Article  Google Scholar 

  21. L. Liu, Z. Yang, C. Deng, Z. Li, M. Abshinova, L. Kong, High frequency properties of composite membrane with in-plane aligned Sendust flake prepared by infiltration method. J. Magn. Magn. Mater. 324(10), 1786–1790 (2012)

    Article  Google Scholar 

  22. J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, Y. Chen, Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47(3), 922–925 (2009)

    Article  Google Scholar 

  23. M.-S. Cao, X.-X. Wang, W.-Q. Cao, J. Yuan, Ultrathin graphene: electrical properties and highly efficient electromagnetic interference shielding. J. Mater. Chem. C 3(26), 6589–6599 (2015)

    Article  Google Scholar 

  24. N. Abbas, H.T. Kim, Multi-walled carbon nanotube/polyethersulfone nanocomposites for enhanced electrical conductivity, dielectric properties and efficient electromagnetic interference shielding at low thickness. Macromol. Res. 24(12), 1084–1090 (2016)

    Article  Google Scholar 

  25. R. Kumar Srivastava, T. Narayanan, A. Reena Mary, M. Anantharaman, A. Srivastava, R. Vajtai, P.M. Ajayan, Ni filled flexible multi-walled carbon nanotube–polystyrene composite films as efficient microwave absorbers. Appl. Phys. Lett. 99(11), 113116 (2011)

    Article  Google Scholar 

  26. S. Bi, X. Su, G. Hou, C. Liu, W.-L. Song, M.-S. Cao, Electrical conductivity and microwave absorption of shortened multi-walled carbon nanotube/alumina ceramic composites. Ceram. Int. 39(5), 5979–5983 (2013)

    Article  Google Scholar 

  27. C. Xiang, Y. Pan, X. Liu, X. Sun, X. Shi, J. Guo, Microwave attenuation of multiwalled carbon nanotube-fused silica composites. Appl. Phys. Lett. 87(12), 123103 (2005)

    Article  Google Scholar 

  28. K. Ahmad, W. Pan, S.-L. Shi, Electrical conductivity and dielectric properties of multiwalled carbon nanotube and alumina composites. Appl. Phys. Lett. 89(13), 133122 (2006)

    Article  Google Scholar 

  29. A. Saib, L. Bednarz, R. Daussin, C. Bailly, X. Lou, J.-M. Thomassin, C. Pagnoulle, C. Detrembleur, R. Jérôme, I. Huynen, Carbon nanotube composites for broadband microwave absorbing materials. IEEE Trans. Microw. Theory Tech. 54(6), 2745–2754 (2006)

    Article  Google Scholar 

  30. D.-X. Yan, P.-G. Ren, H. Pang, Q. Fu, M.-B. Yang, Z.-M. Li, Efficient electromagnetic interference shielding of lightweight graphene/polystyrene composite. J. Mater. Chem. 22(36), 18772–18774 (2012)

    Article  Google Scholar 

  31. C. von Klemperer, G. Langdon, D. Maharaj, D. Shivute, Metallic filler powders to improve the electromagnetic shielding of FRP laminates, in Proceedings of 17th International Conference on Composite Materials (ICCM-17), (Edinburgh, 2009)

  32. H. Hsu, J. Chen, T. Yang, Improvement of electromagnetic interference shielding for anodized aluminum by layered metallic coatings. Ferroelectrics 435(1), 69–77 (2012)

    Article  Google Scholar 

  33. W.A. Curtin, B.W. Sheldon, CNT-reinforced ceramics and metals. Mater. Today 7(11), 44–49 (2004)

    Article  Google Scholar 

  34. D. Vikraman, K. Karuppasamy, S. Hussain, A. Kathalingam, A. Sanmugam, J. Jung, H.S. Kim, One-pot facile methodology to synthesize MoS2-graphene hybrid nanocomposites for supercapacitors with improved electrochemical capacitance. Compos. B 161, 555–563 (2019). https://doi.org/10.1016/j.compositesb.2018.12.143

    Article  Google Scholar 

  35. X. Xu, Y. Ge, M. Wang, Z. Zhang, P. Dong, R. Baines, M. Ye, J. Shen, Cobalt-doped FeSe2-RGO as highly active and stable electrocatalysts for hydrogen evolution reactions. ACS Appl. Mater. Interfaces 8(28), 18036–18042 (2016)

    Article  Google Scholar 

  36. F. Shahzad, S.H. Lee, S.M. Hong, C.M. Koo, Segregated reduced graphene oxide polymer composite as a high performance electromagnetic interference shield. Res. Chem. Intermed. (2018). https://doi.org/10.1007/s11164-018-3274-7

    Google Scholar 

  37. X. Liu, X. Yin, L. Kong, Q. Li, Y. Liu, W. Duan, L. Zhang, L. Cheng, Fabrication and electromagnetic interference shielding effectiveness of carbon nanotube reinforced carbon fiber/pyrolytic carbon composites. Carbon 68, 501–510 (2014)

    Article  Google Scholar 

  38. M.H. Al-Saleh, W.H. Saadeh, U. Sundararaj, EMI shielding effectiveness of carbon based nanostructured polymeric materials: a comparative study. Carbon 60, 146–156 (2013)

    Article  Google Scholar 

  39. K. Nasouri, A.M. Shoushtari, M.R.M. Mojtahedi, Theoretical and experimental studies on EMI shielding mechanisms of multi-walled carbon nanotubes reinforced high performance composite nanofibers. J. Polym. Res. 23(4), 71 (2016)

    Article  Google Scholar 

  40. K. Nasouri, A.M. Shoushtari, Effects of diameter and surface area of electrospun nanocomposite fibers on electromagnetic interference shielding. Polym. Sci. A 59(5), 718–725 (2017)

    Article  Google Scholar 

  41. S.-L. Shi, J. Liang, The effect of multi-wall carbon nanotubes on electromagnetic interference shielding of ceramic composites. Nanotechnology 19(25), 255707 (2008)

    Article  Google Scholar 

  42. H. Kim, K. Kim, C. Lee, J. Joo, S. Cho, H. Yoon, D. Pejaković, J.-W. Yoo, A. Epstein, Electrical conductivity and electromagnetic interference shielding of multiwalled carbon nanotube composites containing Fe catalyst. Appl. Phys. Lett. 84(4), 589–591 (2004)

    Article  Google Scholar 

  43. J. Wang, C. Xiang, Q. Liu, Y. Pan, J. Guo, Ordered mesoporous carbon/fused silica composites. Adv. Funct. Mater. 18(19), 2995–3002 (2008)

    Article  Google Scholar 

  44. P. Verma, P. Saini, V. Choudhary, Designing of carbon nanotube/polymer composites using melt recirculation approach: effect of aspect ratio on mechanical, electrical and EMI shielding response. Mater. Des. 88, 269–277 (2015)

    Article  Google Scholar 

  45. A.P. Singh, B.K. Gupta, M. Mishra, A. Chandra, R. Mathur, S. Dhawan, Multiwalled carbon nanotube/cement composites with exceptional electromagnetic interference shielding properties. Carbon 56, 86–96 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF), funded by the Ministry of Education (2017R1C1B5076952). Dr. Faisal Shahzad is also thankful for financial support of HEC under SRGP project 2182.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajjad Hussain.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ul Hassan, R., Shahzad, F., Abbas, N. et al. Ceramic based multi walled carbon nanotubes composites for highly efficient electromagnetic interference shielding. J Mater Sci: Mater Electron 30, 13381–13388 (2019). https://doi.org/10.1007/s10854-019-01705-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01705-2

Navigation