Skip to main content
Log in

g-C3N4/TiO2 hybrid film on the metal surface, a cheap and efficient sunlight active photoelectrochemical anticorrosion coating

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A solar light active photoelectrochemical anticorrosion paint was prepared by dispersing g-C3N4 nanomaterial in 0.05 M TiO(Acac)2 solution. The paint can form uniform film on the metal surface after paralysis, which can provide effective cathodic protection for 304 SS under visible light irradiation. UV–Vis, Powder XRD, IR and EDS characterization identified that the film was composed by g-C3N4 and amorphous TiO2; After coating the g-C3N4/TiO2 film, which has a thickness around 12 um as shown by SEM, a photo-potential up to 0.20 V was observed for the metal specimen under visible light illumination (30mW/cm2) in 3% NaCl solution. The photo-potential can be accumulated with the irradiation time and held for many hours after removing the light illumination. Effective full-day cathodic protection for 304 SS can be provided by this g-C3N4/TiO2 coating.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.H. Lo, C.H. Shek, J.K.L. Lai, Recent developments in stainless steels. Mater. Sci. Eng. R 65, 39–104 (2009)

    Article  Google Scholar 

  2. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919–9986 (2014)

    Article  CAS  Google Scholar 

  3. J. Yuan, R. Fujisawa, S. Tsujikawa, Photopotentials of copper coated with TiO2 by sol-gel method. Zairyo-to-Kankyo 43, 433–440 (1994)

    Article  CAS  Google Scholar 

  4. Y. Ohko, S. Saitoh, T. Tatsuma, R. Fujisawa, Photoelectrochemical anticorrosion and self-cleaning effects of a TiO2 coating for type 304 stainless steel. J. Electrochem. Soc. 148, B24–B28 (2001)

    Article  CAS  Google Scholar 

  5. T. Imokawa, R. Fujisawa, A. Suda, Protection of 304 stainless steel with TiO2 coating. Zairyo-to-Kankyo 43, 482–486 (1994)

    Article  CAS  Google Scholar 

  6. J. Huang, T. Shinohara, S. Tsujikawa, Protection of carbon steel from atmospheric corrosion by TiO2 coating. Zairyo-to-Kankyo 48, 575–582 (1999)

    Article  CAS  Google Scholar 

  7. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69–96 (1995)

    Article  CAS  Google Scholar 

  8. H. Park, K.Y. Kim, W. Choi, A novel photoelectrochemical method of metal corrosion prevention using a TiO2 solar panel. Chem. Commun. 3, 281–282 (2001)

    Article  Google Scholar 

  9. H. Park, K.Y. Kim, W. Choi, Photoelectrochemical approach for metal corrosion prevention using a semiconductor photoanode. J. Phys. Chem. B 106, 4775–4781 (2002)

    Article  CAS  Google Scholar 

  10. M.C. Li, R.F. Wu, J.N. Shen, Photocathodic protection effect of TiO2 films for carbon steel in 3% NaCl solutions. Electrochim. Acta 50, 3401–3406 (2005)

    Article  CAS  Google Scholar 

  11. S.M. Ali, H.A. Al Lehaibi, Nano-structured sol-gel coatings as protective films against zinc corrosion in 0.5 M HCl solution. J. Saudi Chem. Soc. 21(4), 473–480 (2017)

    Article  CAS  Google Scholar 

  12. Z.S. Li, Z.S. Liu, B.L. Li, D.H. Li, C.Y. Ge, Y.P. Fang, Novel CdS nanorods/g-C3N4 nanosheets 1-D/2-D hybrid architectures: an in situ growth route and excellent visible light photoelectrochemical performances. J. Mater. Sci. 27(3), 2904–2913 (2016)

    CAS  Google Scholar 

  13. J. Hu, Z.C. Guan, Y. Liang, J. Zhou, Q. Liu, H. Wang, H. Zhang, R. Du, Bi2S3 modified single crystalline rutile TiO2 nanorod array films for photoelectrochemical cathodic protection. Corros. Sci. 125, 59–67 (2017)

    Article  CAS  Google Scholar 

  14. T. Zhang, Y. Liu, J. Liang, D. Wang, Enhancement of photoelectrochemical and photocathodic protection properties of TiO2 nanotube arrays by simple surface UV treatment. Appl. Surf. Sci. 394, 440–445 (2017)

    Article  CAS  Google Scholar 

  15. R. Fagan, D.W. Synnott, D.E. McCormack, S.C. Pillai, An effective method for the preparation of high temperature stable anatase TiO2 photocatalysts. Appl. Surf. Sci. 371, 447–452 (2016)

    Article  CAS  Google Scholar 

  16. J. Ren, B. Qian, J. Li, Z. Song, L. Hao, J. Shi, Highly efficient polypyrrole sensitized TiO2 nanotube films for photocathodic protection of Q235 carbon steel. Corros. Sci. 111, 596–601 (2016)

    Article  CAS  Google Scholar 

  17. T. Tatsuma, Y. Ohko, S. Saitoh, TiO2-WO3 photoelectrochemical anticorrosion system with an energy storage ability. Chem. Mater. 13, 2838–2842 (2001)

    Article  CAS  Google Scholar 

  18. R. Subasri, T. Shinohara, Investigations on SnO2-TiO2 composite photoelectrodes for corrosion protection. Electrochem. Commun. 5, 897–902 (2003)

    Article  CAS  Google Scholar 

  19. A. Boonserm, C. Kruehong, V. Seithtanabutara, A. Artnaseaw, P. Kwakhong, Photoelectrochemical response and corrosion behavior of CdS/TiO2 nanocomposite films in an aerated 0.5 M NaCl solution. Appl. Surf. Sci. 419, 933–941 (2017)

    Article  CAS  Google Scholar 

  20. H. Li, X. Wang, Q. Wei, B. Hou, Photocathodic protection of 304 stainless steel by Bi2S3/TiO2 nanotube films under visible light. Nanoscale Res. Lett. 12(1), 80 (2017)

    Article  Google Scholar 

  21. W. Cheng, C. Li, X. Ma, L. Yu, G. Liu, Effect of SiO2-doping on photogenerated cathodic protection of nano-TiO2 films on 304 stainless steel. Mater. Design 126, 155–161 (2017)

    Article  CAS  Google Scholar 

  22. X.F. Cheng, W.H. Leng, D.P. Liu, Electrochemical preparation and characterization of surface-fluorinated TiO2 nanoporous film and its enhanced photoelectrochemical and photocatalytic properties. J. Phys. Chem. C 112, 8725–8734 (2008)

    Article  CAS  Google Scholar 

  23. R. Nakamura, Y. Nakato, Mechanism for visible light responses in anodic photocurrents at N-doped TiO2 film electrodes. J. Phys. Chem. B 108, 10617–10620 (2004)

    Article  CAS  Google Scholar 

  24. J. Liebig, Uber einige Stickstoff-Verbindungen. Ann. Pharm. 10, 1–47 (1834)

    Article  Google Scholar 

  25. X. Wang, K. Maeda, A. Thomas, K. Takanabe, G. Xin, J.M. Carlsson, K. Domen, M. Antonietti, A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat. Mater. 8, 76–80 (2009)

    Article  CAS  Google Scholar 

  26. Q. Qiao, W.Q. Huang, Y.Y. Li, B. Li, W.Y. Hu, W. Peng, X.X. Fan, G.F. Huang, In-situ construction of 2D direct Z-scheme g-C3N4/g-C3N4 homojunction with high photocatalytic activity. J. Mater. Sci. 53, 15882–15894 (2018)

    Article  CAS  Google Scholar 

  27. H.F. Qin, W.H. Lv, J.R. Bai, Y. Zhou, Y.P. Wen, Q.T. He, J.H. Tang, L.B. Wang, Q.F. Zhou, Sulfur-doped porous graphitic carbon nitride heterojunction hybrids for enhanced photocatalytic H2 evolution. J. Mater. Sci. 54, 4811–4820 (2019)

    Article  CAS  Google Scholar 

  28. W.-J. Ong, L.-L. Tan, Y.H. Ng, S.-T. Yong, S.-P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability. Chem. Rev. 116, 7159–7329 (2016)

    Article  CAS  Google Scholar 

  29. Y. Chen, B. Lin, W. Yu, Y. Yang, S.M. Bashir, H. Wang, K. Takanabe, H. Idriss, J.-M. Basset, Surface functionalization of g-C3N4: molecular-level design of noble-metal-free hydrogen evolution photocatalysts. Chem. Eur. J. 21, 10290–10295 (2015)

    Article  CAS  Google Scholar 

  30. Y. Chen, B. Lin, H. Wang, Y. Yang, H. Zhu, W. Yu, J.-M. Basset, Surface modification of g-C3N4 by hydrazine: simple way for noble-metal free hydrogen evolution catalysts. Chem. Eng. J. 286, 339–346 (2016)

    Article  CAS  Google Scholar 

  31. Y. Bu, Z. Chen, J. Yu, W. Li, A novel application of g-C3N4 thin film in photoelectrochemical anticorrosion. Electrochim. Acta 88, 294–300 (2013)

    Article  CAS  Google Scholar 

  32. Y. Bu, Z. Chen, Highly efficient photoelectrochemical anticorrosion performance of C3N4@ZnO composite with quasi-shell-core structure on 304 stainless steel. RSC Adv. 4, 45397–45406 (2014)

    Article  CAS  Google Scholar 

  33. Y. Bu, Z. Chen, T. Xie, W. Li, J. Ao, Fabrication of C3N4 ultrathin flakes by mechanical grind method with enhanced photocatalysis and photoelectrochemical performance. RSC Adv. 6, 47813–47819 (2016)

    Article  CAS  Google Scholar 

  34. X. Du, G. Zou, Z. Wang, X. Wang, A scalable chemical route to soluble acidified graphitic carbon nitride: an ideal precursor for isolated ultrathin g-C3N4 nanosheets. Nanoscale 7, 8701–8706 (2015)

    Article  CAS  Google Scholar 

  35. X. Zhang, X. Xie, H. Wang, J. Zhang, B. Pan, Y, Xie, Enhanced Photoresponsive ultrathin graphitic-phase C3N4 nanosheets for bioimaging. J. Am. Chem. Soc. 135, 18–21 (2013)

    Article  CAS  Google Scholar 

  36. K. Zhu, W. Wang, A. Meng, M. Zhao, J. Wang, M. Zhao, D. Zhang, Y. Jia, C. Xu, Z. Li, Mechanically exfoliated g-C3N4 thin nanosheets by ball milling as high performance photocatalysts. RSC Adv. 5, 56239–56243 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgement

We thanks the financial support from NSF of China (21602258), Central South University (502035002, 502044001), Talents Program of Hunan Province, Natural Science Foundation of Hunan Province (2017JJ3400). D. D. thanks the financial support from the State Grid.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Lin or Yin Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ding, D., Hou, Q., Su, Y. et al. g-C3N4/TiO2 hybrid film on the metal surface, a cheap and efficient sunlight active photoelectrochemical anticorrosion coating. J Mater Sci: Mater Electron 30, 12710–12717 (2019). https://doi.org/10.1007/s10854-019-01635-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01635-z

Navigation