Skip to main content
Log in

Effects of SiO2/Cr2O3 ratios on microstructures and electrical properties of high voltage gradient ZnO varistors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effect of various proportions of SiO2 and Cr2O3 doping on the micro-characteristics and the electrical properties of the ZnO varistors were investigated. As the SiO2/Cr2O3 ratio increased, the voltage gradient increased and then decreased, the nonlinear coefficient α increased, while the leakage current showed the opposite trend, meanwhile the residual voltage ratio was almost stable. When the SiO2/Cr2O3 ratio was 1.7 mol% vs. 0.6 mol%, the ZnO varistors sintered at 1155 °C exhibited excellent comprehensive electrical properties with voltage gradient of 329.9 V/mm, nonlinear coefficient of 65.1, leakage current of 0 µA, residual voltage ratio of 1.663, and aging starting power of 0.72 W. The varistors were in good condition after being struck 18 times of 250 A square wave energy pulse impact, showing a great potential in the industrial application of power distribution systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. P.F. Meng, S.Q. Gu, J. Wang et al., Ceram. Int. 44, 1168–1171 (2017)

    Article  CAS  Google Scholar 

  2. H.F. Zhao, J. Hu, S.M. Chen et al., Ceram. Int. 42, 17880–17883 (2016)

    Article  CAS  Google Scholar 

  3. T.K. Gupta, J. Am. Ceram. Soc. 73, 1817–1840 (2010)

    Article  Google Scholar 

  4. T.K. Gupta, Ferroelectrics 102, 391–396 (1990)

    Article  CAS  Google Scholar 

  5. D.R. Clarke, J. Am. Ceram. Soc. 82, 485–502 (2010)

    Article  Google Scholar 

  6. X.K. Xiao, L.Y. Zheng, L.H. Cheng et al., Ceram. Int. 41, S557–S562 (2015)

    Article  CAS  Google Scholar 

  7. H.R. Bai, S.H. Li, Y.H. Zhao et al., Ceram. Int. 42, 10547–10550 (2016)

    Article  CAS  Google Scholar 

  8. S. Labuayai, V. Promarak, S. Maensiri, Appl. Phys. A 94, 755–761 (2009)

    Article  CAS  Google Scholar 

  9. X.L. Su, X.Q. Liu, Y. Jia et al., J. Mater Sci-Mater El. 24, 4974–4979 (2013)

    Article  CAS  Google Scholar 

  10. J. Rao, A. Yu, C.L. Shao et al., ACS Appl. Mater. Interfaces. 4, 5346 (2012)

    Article  CAS  Google Scholar 

  11. D.P. Cai, H. Huang, D.D. Wang et al., ACS Appl. Mater. Interfaces. 6, 15905 (2014)

    Article  CAS  Google Scholar 

  12. T. Chen, M.H. Wang, H.P. Zhang et al., Mater. Design. 96, 329–334 (2016)

    Article  CAS  Google Scholar 

  13. D.R. Clarke, J. Am. Ceram. Soc. 82, 485–502 (1999)

    Article  CAS  Google Scholar 

  14. T.K. Gupta, J. Am. Ceram. Soc. 73, 1817–1840 (1990)

    Article  CAS  Google Scholar 

  15. P.F. Meng, S.L. Lyu, J. Hu et al., Mater. Lett. 188, 77–79 (2017)

    Article  CAS  Google Scholar 

  16. P.F. Meng, J. Hu, H.F. Zhao et al., Ceram. Int. 42, 19437–19440 (2016)

    Article  CAS  Google Scholar 

  17. H.F. Zhao, J. Hu, S.M. Chen et al., J. Am. Ceram. Soc. 99, 769–772 (2016)

    Article  CAS  Google Scholar 

  18. Y.H. Lin, Z.T. Zhang, Z.L. Tang et al., Adv. Mater. Opt. Electron. 9, 205–209 (1999)

    Article  CAS  Google Scholar 

  19. H. Lu, Y.L. Wang, X. Lin, Mater. Lett. 63, 2321–2323 (2009)

    Article  CAS  Google Scholar 

  20. V.C. Sousa, A.M. Segadães, M.R. Morelli et al., Int. J. Inorg. Mater. 1, 235–241 (1999)

    Article  CAS  Google Scholar 

  21. S.M. Haile, D.W. Johnson, G.H. Wiseman et al., J. Am. Ceram. Soc. 72, 2004–2008 (1989)

    Article  CAS  Google Scholar 

  22. S. Hishita, Y. Yao, S.I. Shirasaki, J. Am. Ceram. Soc. 72, 338–340 (1989)

    Article  CAS  Google Scholar 

  23. N. Riahi-Noori, R. Sarraf-Mamoory, P. Alizadeh et al., J. Ceram. Process. Res. 9, 246–249 (2008)

    Google Scholar 

  24. M. Singhal, V. Chhabra, P. Kang et al., Mater. Res. Bull. 32, 239–247 (1997)

    Article  CAS  Google Scholar 

  25. S. Anas, R.V. Mangalaraja, M. Poothayal et al., Acta Mater. 55, 5792–5801 (2007)

    Article  CAS  Google Scholar 

  26. S.C. Pillai, J.M. Kelly, D.E. McCormack et al., J. Mater. Chem. 18, 3926–3932 (2008)

    Article  CAS  Google Scholar 

  27. Z.J. Xu, S. Ma, R.Q. Chu et al., J. Mater Sci-Mater Electron. 26, 4997–5000 (2015)

    Article  CAS  Google Scholar 

  28. X. Li, Z.Y. Lu, Y.C. Chen et al., Rare. Metal. Mat. Eng. 44, 128–132 (2015)

    Article  Google Scholar 

  29. S. Wan, W.Z. Lü, X.C. Wang, J. Chn. Ceram. Soc. 38, 1122–1126 (2010)

    CAS  Google Scholar 

  30. Z.H. Wu, J.H. Fang, D. Xu et al., Int. J. Min. Met. Mater. 17, 86–91 (2010)

    Article  CAS  Google Scholar 

  31. H. Kanai, M. Imai, J. Mater. Sci. 23, 4379–4382 (1988)

    Article  CAS  Google Scholar 

  32. Z.J. Xu, S. Ma, R.Q. Chu et al., J. Mater Sci-Mater Electron. 26, 1–4 (2015)

    Google Scholar 

  33. S. Ma, Z.J. Xu, R.Q. Chu et al., Ceram. Int. 40(7), 10149–11015 (2014)

    Article  CAS  Google Scholar 

  34. N. Canikoğlu, N. Toplan, K. Yıldız et al., Ceram. Int. 32, 127–132 (2006)

    Article  CAS  Google Scholar 

  35. L. Ke, D.M. Jiang, X.M. Ma, Ceram. Silikaty 53, 102–107 (2009)

    CAS  Google Scholar 

  36. L. Ke, D.M. Jiang, C.X. Wang et al., J. Funct. Mater. 39, 2082–2084 (2008)

    CAS  Google Scholar 

  37. H. Kong, H.Y. Liu, D.M. Jiang et al., Electron. Compo & Mater. 26, 11–13 (2007)

    CAS  Google Scholar 

  38. X.T. Zhao, R.J. Liao, K.L. Liu et al., International conference on high voltage engineering and application, 1–4 (2015)

  39. L. Ke, Y.H. Yuan, H. Zhao et al., Ceram-Silikáty. 57, 53–57 (2013)

    CAS  Google Scholar 

  40. F.C. Luo, J.L. He, Y.H. Lin et al., Key Eng. Mater. 368–372, 514–516 (2008)

    Article  Google Scholar 

  41. J.F. Zhu, G.Q. Qi, L.L. Wang et al., Ceram. Int. 38, S463–S466 (2011)

    Article  CAS  Google Scholar 

  42. H.R. Bai, M.M. Li, Z.J. Xu et al., J. Eur. Ceram. Soc. 37, 3965–3971 (2017)

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the support of the Shanghai Natural Science Foundation, Grants (17ZR1410300) and the National Natural Science Foundation of China (21571125). The authors appreciate the porosity calculation work by TDK (Zhuhai FTZ) Co., Ltd.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xin Ren or Zheng Yao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruan, X., Ren, X., Zhou, W. et al. Effects of SiO2/Cr2O3 ratios on microstructures and electrical properties of high voltage gradient ZnO varistors. J Mater Sci: Mater Electron 30, 12113–12121 (2019). https://doi.org/10.1007/s10854-019-01569-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01569-6

Navigation