Skip to main content
Log in

Dual-mode luminescence: a new perspective in calcium molybdate phosphor for solar cell application

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Herein, a dual mode luminescence behavior of rare earth doped/codoped CaMoO4:(Eu3+, Eu3+/Yb3+) phosphors synthesized by hydrothermal method are presented. The structural analysis and surface morphology were investigated by X-ray diffraction, field emission scanning electron microscopy and Fourier transform infrared spectroscopy techniques. The optical properties were studied through UV–vis diffuse reflectance spectroscopy, photoluminescence (PL) and lifetime measurements. The PL excitation spectra of Eu3+ doped CaMoO4 phosphors were recorded at different excitation wavelengths such as 250, 270, 300, 394 nm wavelengths. The down-shifting PL emission spectra of phosphors were recorded at optimized 250 nm excitation wavelength. In addition, emission was also recorded for Eu3+/Yb3+ codoped CaMoO4 phosphor after an excitation wavelength 980 nm through up-conversion process. The phosphors show hypersensitive red emission (5D0 → 7F2) through down-shifting as well as up-conversion processes. The red color was visualized by using commission international de L’Eclairage (CIE) chromaticity diagram. Thus, the obtained results show that dual-mode red emitting phosphors may be used as spectral converter in solar cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. S. Dutta, S. Som, S.K. Sharma, RSC Adv. 5, 10 (2015)

    Article  Google Scholar 

  2. V.V. Rangari, S.J. Dhoble, J. Rare Earths 33, 2 (2015)

    Article  Google Scholar 

  3. B.K. Gupta, A. Kumar, P. Kumar, J. Dwivedi, G.N. Pandey, G. Kedawat, J. Appl. Phys. (2015). https://doi.org/10.1063/1.4922983

    Google Scholar 

  4. S.K. Singh, D.G. Lee, S.S. Yi, K. Jang, D.-S. Shin, J.H. Jeong, J. Appl. Phys. (2013). https://doi.org/10.1063/1.4803053

    Google Scholar 

  5. C. Strumpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Svrcek, C. del Canizo, I. Tobias, Sol. Energy Mater. Sol. Cells 91, 4 (2017)

    Google Scholar 

  6. X. Huang, S. Han, W. Huang, X. Liu, Chem. Soc. Rev. 42, 1 (2013)

    Article  Google Scholar 

  7. T. Trupke, M.A. Green, P. Wurfel, J. Appl. Phys. 92, 7 (2002)

    Google Scholar 

  8. N. Chander, S.K. Sardana, P.K. Parashar, A. Khan, S. Chawla, V.K. Komarala, IEEE J. Photovolt. 5, 1 (2015)

    Article  Google Scholar 

  9. T.V. Gavrilović, D.J. Jovanović, V.M. Lojpur, M. Dramicanin, Sci Rep (2014). https://doi.org/10.1038/srep04209

    Google Scholar 

  10. G. Kaur, S.K. Singh, S.B. Rai, J. Appl. Phys. 107, 7 (2010)

    Article  Google Scholar 

  11. V. Kumar, S. Singh, S. Chawla, Superlattice Microstruct. 79, 86–95 (2015)

    Article  Google Scholar 

  12. S.K. Singh, A.K. Singh, S.B. Rai, Nanotechnology 22, 1 (2011)

    Google Scholar 

  13. R. Saraf, C. Shivakumara, N. Dhananjaya, S. Behera, H. Nagabhushana, J. Mater. Sci. 50, 1 (2015)

    Article  Google Scholar 

  14. R.Z. Zhuang, L.Z. Zhang, Z.B. Lin, G.F. Wang, Mater. Res. Innov. 12, 2 (2008)

    Article  Google Scholar 

  15. S. Belogurov, V. Kornoukhov, A. Annenkov, A. Borisevich et al., IEEE Trans. Nucl. Sci. 52, 4 (2015)

    Google Scholar 

  16. Z. Hou, R. Chai, M. Zhang, C. Zhang, P. Chong, Z. Xu, G. Li, J. Lin, Langmuir 25, 20 (2009)

    Google Scholar 

  17. S.K. Sharma, S. Dutta, S. Som, P.S. Mandal, J. Mater. Sci. Technol. 29, 7 (2013)

    Article  Google Scholar 

  18. S. Dutta, S. Som, J. Priya, S.K. Sharma, Solid State Sci, 18, 54 (2013)

    Article  Google Scholar 

  19. J. Li, T. Zhang, G. Zhu, H. Zheng, J. Rare Earth 37, 7 (2017)

    Google Scholar 

  20. W. Bai, Y. Liu, Y. Wang, X. Qiang, L. Feng, Ceram. Int. 41, 10 (2015)

    Google Scholar 

  21. G. Seeta Rama Raju, E. Pavitra, Y.H. Ko, J.S. Yu, J. Mater. Chem. 22, 31 (2012)

    Article  Google Scholar 

  22. P. Bindu, S. Thomas, J. Theor. Appl. Phys. 8, 4 (2014)

    Article  Google Scholar 

  23. Introduction to the Program FULLPROF Refinement

  24. B.P. Singh, M. Maheshwary, P.V. Ramakrishna, S. Singh, V.K. Sonu, S. Singh, P. Singh, A. Bahadur, R.A. Singh, S.B. Rai, RSC Adv. 5, 69 (2015)

    Google Scholar 

  25. L.B. McCusker, R.B. Von Dreel, D.E. Cox, D. Loue, P. Scardi, J. Appl. Crystallogr. 32, 36–50 (1999)

    Article  Google Scholar 

  26. A. Marques, E. Leite, J. Varela, E. Longo, Nanoscale Res. Lett. 3, 4 (2008)

    Article  Google Scholar 

  27. A.P.A. Marques, F.V. Motta, E.R. Leite, P.S. Pizani, J.A. Varela, E. Longo, D.M.A. de Melo, J. Appl. Phys. 104, 4 (2008)

    Article  Google Scholar 

  28. A.K. Parchur, R.S. Ningthoujam, Dalton Trans. 40, 29 (2011)

    Google Scholar 

  29. A.K. Parchur, R.S. Ningthoujam, S.B. Rai, G.S. Okram, R.A. Singh, M. Tyagi, S.C. Gadkari, R. Tewari, R.K. Vatsa, Dalton Trans. 40, 29 (2011)

    Google Scholar 

  30. L. Li, Z. Leng, W. Zi, S. Gan, J. Electron. Mater. 43, 7 (2014)

    Google Scholar 

  31. S. Som, A.K. Kunti, V. Kumar, V. Kumar, S. Dutta, M. Chowdhury, S.K. Sharma, J.J. Terblans, H.C. Swart, J. Appl. Phys. 115, 19 (2014)

    Article  Google Scholar 

  32. M. Chowdhury, S.K. Sharma, RSC Adv. 5, 63 (2015)

    Google Scholar 

  33. Y.C. Chen, W.B. Hung, T.M. Chen, K.W. Sun, Res. Appl. 21, 7 (2013)

    Google Scholar 

  34. J. Singh, J. Manam, Ceram. Int. 42, 6 (2016)

    Google Scholar 

  35. S. Das, C.-Y. Yang, H.-C. Lin, C.-H. Lu, RSC Adv. 4, 87 (2014)

    Google Scholar 

  36. Z. Xia, S. Miao, M.S. Molokeev, M. Chen, Q. Liu, J. Mater. Chem. C 4, 6 (2016)

    Google Scholar 

  37. Y. Tian, B. Chen, R. Hua, N. Yu, B. Liu, J. Sun, L. Cheng, H. Zhong, X. Li, J. Zhang, B. Tian, H. Zhong, CrystEngComm 14, 5 (2012)

    Google Scholar 

  38. B. Tian, B. Chen, Y. Tian, X. Li, J. Zhang, J. Sun, H. Zhong, L. Cheng, S. Fu, H. Zhong, Y. Wang, X. Zhang, H. Xia, R. Hua, J. Mater. Chem. C 1, 12 (2013)

    Article  Google Scholar 

  39. G.S. Maciel, A. Biswas, P.N. Parsad, Opt. Commun. 178, 1–3 (2000)

    Article  Google Scholar 

  40. D.K. Mohanty, V.K. Rai, J. Disp. Technol. 9, 7 (2013)

    Article  Google Scholar 

  41. S. Chawla, M. Parvaz, V. Kumar, Z. Buch, N. J. Chem. 37, 12 (2013)

    Article  Google Scholar 

  42. B.S. Richards, Sol. Energy Mater. Sol. Cells 90, 8 (2006)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Central Research Facility of IIT (ISM) Dhanbad for FESEM with EDX and UV–vis–NIR measurements. The authors are also thankful to Dr. V. K. Rai of Department of Applied Physics, IIT (ISM) Dhanbad for up-conversion measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, A., Sharma, S.K. Dual-mode luminescence: a new perspective in calcium molybdate phosphor for solar cell application. J Mater Sci: Mater Electron 30, 11778–11789 (2019). https://doi.org/10.1007/s10854-019-01543-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01543-2

Navigation