Skip to main content
Log in

Tunable luminescence from Eu3+ and Ce3+ doped/co-doped color tunable Na4Ca(PO3)6 phosphors for white LEDs and solar cell applications

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In recent years, the invention of white light by combining red, green and blue (RGB) phosphors with near-ultraviolet (NUV) chips has been extensively studied. In this study, a series of Na4Ca(PO3)6 (NCPO) phosphors doped and co-doped with Eu3+, Ce3+ were synthesized using solid state diffusion method at 600 °C. In the present work, the phase purity, crystalline nature, particle size, elemental composition, vibrational stretching and bending, thermal stability, luminescence behavior and IV characteristics of the synthesized samples have been analyzed. Luminescent spectra of obtained sample reveal that the samples are excited under Ultraviolet (UV)/near UV light and exhibits blue, orange and red color emission. The CIE chromaticity coordinates are found in the white color region, confirming that the synthesized phosphor produces white light. In addition, the synthesized NCPO phosphor was coated with a commercial silicon solar cell and it was found that silicon-based solar cell efficiency increased around 14.04% and 13.5% under the solar simulator and direct sunlight, respectively. Present study reveals that the synthesized phosphors have a suitable ability to serve as down-converted phosphors for white LEDs and solar cell applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

Data availability

The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

References

  1. S.R. Perumal, F. Baharum, M.N.M. Nawi, Addressing visual comfort issues in healthcare facilities using LED lighting technology—a review on daylighting importance, impact of correlated colour temperature, human responses and other visual comfort parameters. J. Adv. Res. Fluid. Mech. Therm. Sci. 82, 47–60 (2021). https://doi.org/10.37934/arfmts.82.2.4760

    Article  Google Scholar 

  2. H. Verhaar, Lighting: a driver of the sustainable revolution. Photoniques (2018). https://doi.org/10.1051/photon/2018s336

    Article  Google Scholar 

  3. Z. Sun, G. Liu, Z. Fu et al., Nanostructured La2O3: Yb3+/Er3+: temperature sensing, optical heating and bio-imaging application. Mater. Res. Bull. 92, 39–45 (2017). https://doi.org/10.1016/j.materresbull.2017.04.005

    Article  CAS  Google Scholar 

  4. P. Sehrawat, B.P. Dayawati et al., Crystal structure engineering and optical analysis of novel greenish Sr9Al6O18:Er3+ nanomaterials for NUV excitable cool-white LED applications. Chem. Phys. Lett. 759, 138044 (2020). https://doi.org/10.1016/j.cplett.2020.138044

    Article  CAS  Google Scholar 

  5. S. Tabanli, G. Eryurek, Optical investigation of Er3+ and Er3+/Yb3+ doped zinc-tellurite glass for solid-state lighting and optical thermometry. Sens. Actuators A 285, 448–455 (2019). https://doi.org/10.1016/j.sna.2018.11.043

    Article  CAS  Google Scholar 

  6. D. Dastan, Nanostructured anatase titania thin films prepared by sol-gel dip coating technique. J. At. Mol. Condens. Nano Phys. 2, 109–114 (2015)

    Google Scholar 

  7. D. Dastan, N.B. Chaure, Influence of surfactants on TiO2 nanoparticles grown by sol-gel technique. Int. J. Mater. Mech. Manuf. (2014). https://doi.org/10.7763/ijmmm.2014.v2.91

    Article  Google Scholar 

  8. X. Huang, H. Guo, Finding a novel highly efficient Mn4+-activated Ca3La2W2O12 far-red emitting phosphor with excellent responsiveness to phytochrome PFR: towards indoor plant cultivation application. Dye Pigment 152, 36–42 (2018). https://doi.org/10.1016/j.dyepig.2018.01.022

    Article  CAS  Google Scholar 

  9. L. Li, W. Chang, W. Chen et al., Double perovskite LiLaMgWO6:Eu3+ novel red-emitting phosphors for solid sate lighting: synthesis, structure and photoluminescent properties. Ceram. Int. 43, 2720–2729 (2017). https://doi.org/10.1016/j.ceramint.2016.11.093

    Article  CAS  Google Scholar 

  10. D. Chen, Y. Zhou, J. Zhong, A review on Mn4+ activators in solids for warm white light-emitting diodes. RSC Adv. 6, 86285–86296 (2016). https://doi.org/10.1039/c6ra19584a

    Article  CAS  Google Scholar 

  11. C.M. Mehare, Y.R. Parauha, N.S. Dhoble et al., Synthesis of novel Eu2+ activated K3Ca2(SO4)3F down-conversion phosphor for near UV excited white light emitting diode. J. Mol. Struct. 1212, 127957 (2020). https://doi.org/10.1016/j.molstruc.2020.127957

    Article  CAS  Google Scholar 

  12. R. Yatish, S.J.D. Parauha, Photoluminescence and electron-vibrational interaction in 5d state of Eu2+ ion in Ca3Al2O6 down-conversion phosphor. Opt. Laser Technol. 142, 107191 (2021). https://doi.org/10.1016/j.optlastec.2021.107191

    Article  CAS  Google Scholar 

  13. S.R. Bargat, Y.R. Parauha, G.C. Mishra, S.J. Dhoble, Combustion synthesis and spectroscopic investigation of CaNa2(SO4)2:Eu3+ phosphor. J. Mol. Struct. 1221, 128838 (2020). https://doi.org/10.1016/j.molstruc.2020.128838

    Article  CAS  Google Scholar 

  14. L. Liang, L. Mei, H. Liu et al., Intense broad-band absorption and blue-emitting Ca9La(PO4)5(SiO4)Cl2:Eu2+ phosphor under near-ultraviolet excitation. J. Lumin. 206, 154–157 (2019). https://doi.org/10.1016/j.jlumin.2018.10.036

    Article  CAS  Google Scholar 

  15. S.K. Hussain, L.K. Bharat, D.H. Kim, J.S. Yu, Facile pechini synthesis of Sr3Y2Ge3O12:Bi3+/Eu3+phosphors with tunable emissions and energy transfer for WLEDs. J. Alloys Compd. 703, 361–369 (2017). https://doi.org/10.1016/j.jallcom.2017.01.345

    Article  CAS  Google Scholar 

  16. F. Xie, Z. Dong, D. Wen et al., A novel pure red phosphor Ca8MgLu(PO4)7:Eu3+ for near ultraviolet white light-emitting diodes. Ceram. Int. 41, 9610–9614 (2015). https://doi.org/10.1016/j.ceramint.2015.04.023

    Article  CAS  Google Scholar 

  17. X. Huang, H. Guo, B. Li, Eu3+-activated Na2Gd(PO4)(MoO4): a novel high-brightness red-emitting phosphor with high color purity and quantum efficiency for white light-emitting diodes. J. Alloys Compd. 720, 29–38 (2017). https://doi.org/10.1016/j.jallcom.2017.05.251

    Article  CAS  Google Scholar 

  18. V.B. Pawade, S.J. Dhoble, Optical properties of blue emitting Ce3+ activated XMg2Al16O27 (X = Ba, Sr) phosphors. Opt. Commun. 284, 4185–4189 (2011). https://doi.org/10.1016/j.optcom.2011.05.015

    Article  CAS  Google Scholar 

  19. Y.R. Parauha, S.J. Dhoble, Synthesis and luminescence characterization of Eu3+ doped Ca7Mg2(PO4)6 phosphor for eco-friendly white LEDs and TL Dosimetric applications. Luminescence (2020). https://doi.org/10.1002/bio.3900

    Article  Google Scholar 

  20. G. Blasse, Optical electron transfer between metal ions and its consequences. Complex Chem. Struct. Bond (1991). https://doi.org/10.1007/3-540-53499-7_3

    Article  Google Scholar 

  21. Y. Yang, X. Lv, L. Wei et al., Energy transfer from Ce3+ to Eu3+ through Tb3+ chain in YPO4:Ce3+/Tb3+/Eu3+ phosphors. Solid State Commun. 269, 35–38 (2018). https://doi.org/10.1016/j.ssc.2017.10.002

    Article  CAS  Google Scholar 

  22. A.A. Setlur, Sensitizing Eu3+ with Ce3+ and Tb3+ to make narrow-line red phosphors for light emitting diodes. Electrochem. Solid-State Lett. 15, 2012–2014 (2012). https://doi.org/10.1149/2.022206esl

    Article  CAS  Google Scholar 

  23. D.P. Van, T. Ngoc, N.X. Ca et al., Study of spectroscopy of Eu3+ and energy transfer from Ce3+ to Eu3+ in sodium-zinc-lead-borate glass. J. Lumin. 229, 117660 (2021). https://doi.org/10.1016/j.jlumin.2020.117660

    Article  CAS  Google Scholar 

  24. K.N. Kumar, L. Vijayalakshmi, J. Choi, J.S. Kim, Efficient red-luminescence of CaLa2ZnO5 phosphors co-doped by Ce3+ and Eu3+ ions. J. Alloys Compd. 787, 711–719 (2019). https://doi.org/10.1016/j.jallcom.2019.02.105

    Article  CAS  Google Scholar 

  25. L. Zheng, B. Zheng, H. Xia et al., Color-tunable emission and non-contact optical temperature sensing performance in NaY9Si6O26: Ce3+, Eu3+ phosphors. Mater. Res. Bull. 138, 111210 (2021). https://doi.org/10.1016/j.materresbull.2021.111210

    Article  CAS  Google Scholar 

  26. K. Shan, F. Zhai, Z.Z. Yi et al., Mixed conductivity and the conduction mechanism of the orthorhombic CaZrO3 based materials. Surf. Interfaces 23, 100905 (2021). https://doi.org/10.1016/j.surfin.2020.100905

    Article  CAS  Google Scholar 

  27. K. Shan, Z.Z. Yi, X.T. Yin et al., Mixed conductivity evaluation and sensing characteristics of limiting current oxygen sensors. Surf. Interfaces 21, 100762 (2020). https://doi.org/10.1016/j.surfin.2020.100762

    Article  CAS  Google Scholar 

  28. P. Kumar Sahu, S. Agrawal, Synthesis and luminescence study of Gd3+ doped Y6Ba4(SiO4)6F2 phosphors. Mater. Today Proc. 44, 3160–3163 (2021). https://doi.org/10.1016/j.matpr.2021.02.823

    Article  CAS  Google Scholar 

  29. T.A. Safeera, E.I. Anila, An investigation on the luminescence quenching mechanism of ZnGa2O4:Tb3+ phosphor. J. Lumin. 205, 277–281 (2019). https://doi.org/10.1016/j.jlumin.2018.09.033

    Article  CAS  Google Scholar 

  30. J. Zhu, M. Yang, Y. Che et al., Europium (III) doped LiNa2B5P2O14 phosphor: surface analysis, DFT calculations and luminescent properties. J. Alloys Compd. 822, 153606 (2020). https://doi.org/10.1016/j.jallcom.2019.153606

    Article  CAS  Google Scholar 

  31. B. Yu, Y. Li, Y. Wang, L. Geng, A new eulytite-type Pb3Bi(PO4)3:Eu3+ red-emitting phosphor: synthesis, structure and photoluminescence characteristics. J. Lumin. 220, 116978 (2020). https://doi.org/10.1016/j.jlumin.2019.116978

    Article  CAS  Google Scholar 

  32. D. Dastan, Effect of preparation methods on the properties of titania nanoparticles: solvothermal versus sol–gel. Appl. Phys. A 123, 1–13 (2017). https://doi.org/10.1007/s00339-017-1309-3

    Article  CAS  Google Scholar 

  33. Y. Jiao, Z. Huang, W. Hu et al., In-situ hybrid Cr3C2 and γ′-Ni3(Al, Cr) strengthened Ni matrix composites: microstructure and enhanced properties. Mater. Sci. Eng. A 820, 141524 (2021). https://doi.org/10.1016/j.msea.2021.141524

    Article  CAS  Google Scholar 

  34. X. Li, H. Yang, N. Ding et al., Luminescence properties, crystal structure and high thermal stable of (Gd0.85-xLux)2MgTiO6:Eu3+ red phosphors. Opt. Mater. 110, 110526 (2020). https://doi.org/10.1016/j.optmat.2020.110526

    Article  CAS  Google Scholar 

  35. M. Xia, X. Wu, Y. Zhong et al., Photoluminescence properties and energy transfer in a novel Sr8ZnY(PO4)7:Tb3+, Eu3+ phosphor with high thermal stability and its great potential for application in warm white light emitting diodes. J. Mater. Chem. C 7, 2927–2935 (2019). https://doi.org/10.1039/c8tc06235h

    Article  CAS  Google Scholar 

  36. G.K. Behrh, R. Gautier, C. Latouche et al., Synthesis and photoluminescence properties of Ca2Ga2SiO7:Eu3+ red phosphors with an Intense 5D07F4 transition. Inorg. Chem. 55(18), 9144–9946 (2020)

    Article  Google Scholar 

  37. R. Saraf, C. Shivakumara, S. Behera et al., Photoluminescence, photocatalysis and Judd-Ofelt analysis of Eu3+-activated layered BiOCl phosphors. RSC Adv. 5, 4109–4120 (2015). https://doi.org/10.1039/c4ra10163d

    Article  CAS  Google Scholar 

  38. G. Blasse, B.C. Grabmaier, Luminescent Materials (Springer, Berlin, 1994)

    Book  Google Scholar 

  39. A.R. Kadam, G.C. Mishra, A.D. Deshmukh, S.J. Dhoble, Enhancement of blue emission in Ce3+, Eu2+ activated BaSiF6 downconversion phosphor by energy transfer mechanism: a photochromic phosphor. J. Lumin. 229, 117676 (2021). https://doi.org/10.1016/j.jlumin.2020.117676

    Article  CAS  Google Scholar 

  40. A.M. Bhake, Y.R. Parauha, S.J. Dhoble, Synthesis and photoluminescence study of Ce3+ ion-activated Na2ZnP2O7 and Na4P2O7 pyrophosphate phosphors. J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-02559-4

    Article  Google Scholar 

  41. G.B. Nair, S.J. Dhoble, White light emission through efficient energy transfer from Ce3+ to Dy3+ ions in Ca3Mg3(PO4)4 matrix aided by Li+ charge compensator. J. Lumin. 192, 1157–1166 (2017). https://doi.org/10.1016/j.jlumin.2017.08.047

    Article  CAS  Google Scholar 

  42. M.C. So, G.P. Wiederrecht, J.E. Mondloch et al., Metal-organic framework materials for light-harvesting and energy transfer. Chem. Commun. 51, 3501–3510 (2015). https://doi.org/10.1039/c4cc09596k

    Article  CAS  Google Scholar 

  43. Y.R. Parauha, V. Chopra, S.J. Dhoble, Synthesis and luminescence properties of RE3+ (RE = Eu3+, Dy3+) activated CaSr2(PO4)2 phosphors for lighting and dosimetric applications. Mater. Res. Bull. 131, 110971 (2020). https://doi.org/10.1016/j.materresbull.2020.110971

    Article  CAS  Google Scholar 

  44. C. Strümpel, M. McCann, G. Beaucarne et al., Modifying the solar spectrum to enhance silicon solar cell efficiency-an overview of available materials. Sol. Energy Mater. Sol. Cells 91, 238–249 (2007). https://doi.org/10.1016/j.solmat.2006.09.003

    Article  CAS  Google Scholar 

  45. A.R. Kadam, S.J. Dhoble, Energy transfer mechanism of KAlF4:Dy3+, Eu3+ co-activated down-conversion phosphor as spectral converters: an approach towards improving photovoltaic efficiency by downshifting layer. J. Alloys Compd. 884, 161138 (2021). https://doi.org/10.1016/j.jallcom.2021.161138

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors Yatish R. Parauha is thankful to Department of Science and Technology (DST), India for financial support through INSPIRE fellowship (INSPIRE Code – IF180284). One more authors SJD is thankful to Department of Science and Technology (DST), India (Nano Mission) (Sanction Project Ref. No. DST/NM/NS/2018/38(G), dt.16/01/2019) for financial assistance.

Author information

Authors and Affiliations

Authors

Contributions

DJD: Methodology, Investigation, Validation, Writing. YRP: Conceptualization, Investigation, Writing—original draft. ABC: Investigation, Validation, Writing—review & editing. SJD: Writing—review & editing. HCS: Supervision, Writing—review & editing, Funding acquisition, Resources.

Corresponding author

Correspondence to S. J. Dhoble.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dhiman, D.J., Parauha, Y.R., Chourasia, A.B. et al. Tunable luminescence from Eu3+ and Ce3+ doped/co-doped color tunable Na4Ca(PO3)6 phosphors for white LEDs and solar cell applications. J Mater Sci: Mater Electron 33, 11106–11123 (2022). https://doi.org/10.1007/s10854-022-08087-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08087-y

Navigation