Skip to main content
Log in

Room temperature magnetocaloric effect and critical behavior in La0.67Ca0.23Sr0.1Mn0.98Ni0.02O3 oxide

  • Original Research
  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The structural, magnetic and magnetocaloric properties of \({\text{La}}_{0.67} {\text{Ca}}_{0.23} {\text{Sr}}_{0.1} {\text{Mn}}_{0.98} {\text{Ni}}_{0.02} {\text{O}}_{3}\) nano-crystalline manganite are investigated systematically. The compound is elaborated based on Pechini sol–gel method and then annealed at 1000 °C for 24 h. X-ray powder diffraction shows that, the sample crystallizes in a rhombohedral structure with \(R\overline{3} C\) space group. A magnetization versus temperature study shows that the compound exhibits a second-order magnetic transition from a ferromagnetic to a paramagnetic state at a Curie temperature \(T_{C}\) = 296 K. To evaluate the magnetic entropy change \(\Delta S_{M}\), we measure the magnetization as a function of temperature and magnetic field. At ambient temperature, we find that \({\text{La}}_{0.67} {\text{Ca}}_{0.23} {\text{Sr}}_{0.1} {\text{Mn}}_{0.98} {\text{Ni}}_{0.02} {\text{O}}_{3}\) sample has a very important magnetocaloric effect (MCE). In a magnetic field variation of 5 T, this MCE is explained by a maximum of magnetic entropy change \(\left| {\Delta S_{M}^{max} } \right|\) and a big RCP values at 4.92 \({\text{J}}.{\text{Kg}}^{ - 1} {\text{K}}^{ - 1}\) and 145 J/kg, respectively, around room temperature (296 K), which give the possibility of technologic application in magnetic refrigeration area. In addition, we find an admirable estimate of the magnetic entropy change, which is based on the Landau theory. Finally, we use the magnetic field dependence of \(\Delta S_{M}\) to determine the critical exponents of the system and we find that β = 0.39, γ = 1.35, and δ = 4.43, are very close to those predicted to the 3D-Heisenberg model. These results indicate that the present compound is one of candidate materials for magnetic refrigerators near room temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig.1
Fig.2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
Fig.9
Fig.10

Similar content being viewed by others

References

  1. A. Kitanovski, J. Tušek, U. Tomc, U. Plaznik, M. Ozbolt, A. Poredoš, Magnetocaloric energy conversion: from theory to applications (Springer, Berlin, 2015)

    Book  Google Scholar 

  2. C. Doroftei, L. Leontie, A. Popa, The study on nanogranular system manganites La–Pb–Ca–Mn–O which exhibits a large magnetoresistance near room temperature. J. Mater. Sci. 28, 12891–12899 (2017). https://doi.org/10.1007/s10854-017-7119-8

    Article  CAS  Google Scholar 

  3. V. Sudharshan, P. Pal, S. Asthana, Investigation of near room temperature magnetocaloric, magnetoresistance and bolometric properties of Nd0.5La0.2Sr0.3MnO3:Ag2O manganites. J. Mater. Sci. 27, 6156–6165 (2016). https://doi.org/10.1007/s10854-016-4543-0

    Article  CAS  Google Scholar 

  4. S.A. Palomares-Sánchez, S.A. Palomares-Sánchez, J.T. Elizalde Galindo, M. Mirabal-Garcia, Magnetocaloric effect near room temperature of La0.67Ca0.33−xSrxMnO3 (x = 0.06, 0.07, 0.08) manganites. J. Supercond. Nov. Magn. 28, 1635–1638 (2015)

    Article  Google Scholar 

  5. S.Y. Dan’kov, A.M. Tishin, V.K. Pecharsky, K.A. Gschneidner Jr., Magnetic phase transitions and the magnetothermal properties of gadolinium. Phys. Rev. B 57, 3478 (1998). https://doi.org/10.1103/PhysRevB.57.3478

    Article  Google Scholar 

  6. Y.S. Jeong, M.S. Anwar, F. Ahmed, S.R. Lee, B.H. Koo, Study of magnetic transition and magnetocaloric effect in La1-xSrxMnO3 (0.20 ≤ x ≤ 0.35) compounds. Appl. Mech. Mater. 378, 225–229 (2013). https://doi.org/10.4028/www.scientific.net/AMM.378.225

    Article  CAS  Google Scholar 

  7. D. Kim, B.L. Zink, F. Hellman, J.M.D. Coey, Critical behavior of La0.75Sr0.25MnO3. Phys. Rev. B 65, 214424 (2002). https://doi.org/10.1103/PhysRevB.65.214424

    Article  CAS  Google Scholar 

  8. A. Dhahri, M. Jemmali, E. Dhahri, M.A. Valente, Structural characterization, magnetic, magnetocaloric properties and phenomenological model in manganite La0.75Sr0.1Ca0.15MnO3 compound. J. Alloy. Compd. 638, 221–227 (2015). https://doi.org/10.1016/j.jallcom.2015.01.314

    Article  CAS  Google Scholar 

  9. E.L. Hernández-González, B.E. Watts, S.A. Palomares-Sánchez, J.T. Elizalde Galindo, M. Mirabal-García, Second-order magnetic transition in La0.67Ca0.33−xSrxMnO3 (x = 0.05, 0.06, 0.07, 0.08). J. Supercond. Nov. Magn. 29, 2421–2427 (2016). https://doi.org/10.1007/s10948-016-3560-9

    Article  CAS  Google Scholar 

  10. M. Gupta, R.K. Kotnala, W. khan, A. Azam, A.H. Naqi, Magnetic, transport and magnetoresistance behavior of Ni doped La0.67Sr0.33Mn1−xNixO3 (0.00 ≤ x ≤ 0.09) system. J. Solid State Chem. 204, 205–212 (2013). https://doi.org/10.1016/j.jssc.2013.05.018

    Article  CAS  Google Scholar 

  11. M. Pe˛kała, V. Drozd, J.F. Fagnard, Ph. Vanderbemden, M. Ausloos, Magnetotransport of La0.5Ba0.5MnO3. J. Appl. Phys. 105, 013923 (2009)

    Article  Google Scholar 

  12. Lev P. Gor’kov, Vladimir Z. Kresin, Mixed-valence manganites: fundamentals and main properties. Phys. Rep. 400, 149–208 (2004). https://doi.org/10.1016/j.physrep.2004.08.003

    Article  CAS  Google Scholar 

  13. A. Mleiki, S. Othmani, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, E.K. Hlil, Effect of praseodymium doping on the structural, magnetic and magnetocaloric properties of Sm0.55−xPrxSr0.45MnO3 (0.1 ≤ x ≤ 0.4) manganites. J. Alloys Compd. 645, 559–565 (2015)

    Article  CAS  Google Scholar 

  14. H.Y. Hwang, S.W. Cheong, N.P. Ong, B. Batlogg, Spin-polarized intergrain tunneling in La2/3Sr1/3MnO3. Phys. Rev. Lett. 77, 2041 (1996). https://doi.org/10.1103/PhysRevLett.77.2041

    Article  CAS  Google Scholar 

  15. B.C. Tofield, W.R. Scott, Oxidative nonstoichiometry in perovskites, an experimental survey; the defect structure of an oxidized lanthanum manganite by powder neutron diffraction. J. Solid State Chem. 10, 183–194 (1974). https://doi.org/10.1016/0022-4596(74)90025-5

    Article  CAS  Google Scholar 

  16. T.A. Yamamoto, M. Tanaka, Y. Misaka, T. Nakagawa, T. Nkayama, K. Niihara, T. Numazawa, Dependence of the magnetocaloric effect in superparamagnetic nanocomposites on the distribution of magnetic moment size. Scripta Mater. 46, 89–94 (2002)

    Article  CAS  Google Scholar 

  17. Ah Dhahri, M. Jemmali, K. Taibi, E. Dhahri, E.K. Hlil, Structural, magnetic and magnetocaloric properties of La0.7Ca0.2Sr0.1Mn1−xCrxO3 compounds with x = 0, 0.05 and 0.1. J. Alloys Compd. 618, 488–496 (2015). https://doi.org/10.1016/j.jallcom.2014.08.117

    Article  CAS  Google Scholar 

  18. S. Othmani, R. Blel, M. Bejar, M. Sajieddine, E. Dhahri, E.K. Hlil, New complex magnetic materials for an application in Ericsson refrigerator. Solid State Commun. 149, 969–972 (2009). https://doi.org/10.1016/j.ssc.2009.04.020

    Article  CAS  Google Scholar 

  19. R. M’nassri, W. Cheikhrouhou-Koubaa, M. Kouba, A. Cheikhrouhou, Effect of strontium substitution on the physical properties of Nd0.5Ca0.5-xSrxMnO3 (0.0 ≤ x ≤ 0.5) manganites. IOP Conf. Ser. Mater. Sci. Eng. 28, 012050 (2012)

    Article  Google Scholar 

  20. A. Selmi, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, Effect of Ni doping on the structural. magnetic and magnetocaloric properties of Pr0.7Ca0.3Mn1−y NiyO3 Manganites. J. Supercond. Nov. Magn. 26, 1421–1428 (2013). https://doi.org/10.1007/s10948-012-1830-8

    Article  CAS  Google Scholar 

  21. C. Vazquez, M.C. Blanco, M.A. Lopez-Quintela, R.D. Sanchez, J. Rivas, S.B. Oseroff, Characterization of La0.67Ca0.33MnO3 ± δ particles prepared by the sol–gel route. J. Mater. Chem. 8, 991–1000 (1998). https://doi.org/10.1039/a707226k

    Article  Google Scholar 

  22. R.D. Sanchez, J. Rivas, C. Vazquez-Vazquez, A. Lopez-Quintela, M.T. Causa, M. Tovar, S. Oseroff, Giant magnetoresistance in fine particle of La0.67Ca0.33MnO3 synthesized at low temperatures. Appl. Phys. Lett. 68, 134 (1996). https://doi.org/10.1063/1.116780

    Article  CAS  Google Scholar 

  23. H.M. Rietveld, A profile refinement method for nuclear and magnetic structures. J. Appl. Cryst. 2, 65 (1969). https://doi.org/10.1107/S0021889869006558

    Article  CAS  Google Scholar 

  24. T. Roisnel, J. Rodriguez-Carvajal, Computer program FULLPROF, LLB-LCSIM (May 2003)

  25. V.M. Gunnar Beskow, Goldschmidt Geochemische Verteilungsgesetze der Elemente VII. Geologiska Föreningen i Stockholm Förhandlingar 46, 1924 (2010). https://doi.org/10.1080/11035892409454037

    Article  Google Scholar 

  26. J.M.D. Coey, M. Viret, S. Von Molnar, Mixed-valence manganites. Adv. Phys. 48, 167–293 (1999). https://doi.org/10.1080/000187399243455

    Article  CAS  Google Scholar 

  27. Joël Cibert, Jean-François Bobo, Ulrike Lüders, Development of new materials for spintronics Développement de nouveaux matériaux pour la spintronique. C R Phys. 6, 977–996 (2005). https://doi.org/10.1016/j.crhy.2005.10.008

    Article  CAS  Google Scholar 

  28. Nesrine Mechi, Bandar Alzahrani, Sobhi Hcini, Mohamed Lamjed Bouazizi, Abdessalem Dhahri, Correlation between magnetocaloric and electrical properties based on phenomenological models in La0.47Pr0.2Pb0.33MnO3 perovskite. Ph. Trans. 91, 559–572 (2018). https://doi.org/10.1080/01411594.2018.1424336

    Article  CAS  Google Scholar 

  29. A. Taylor, X-ray Metallography, vol. 993 (John Wiley & Sons Inc, New York, 1961)

    Google Scholar 

  30. C.V. Vazquez, M.C. Blanco, M.A.L. Quintela, R.D. Sanchez, J. Rivas, S.B. Oseroff, Characterization of La0.67Ca0.33MnO3 ± δ particles prepared by the sol–gel route. J. Mater. Chem. 8, 991–1000 (1998)

    Article  Google Scholar 

  31. Souhir Bouzidi, Mohamed Amara Gdaiem, J. Dhahri, E.K. Hlil, Large magnetocaloric entropy change at room temperature in soft ferromagnetic manganites. RSC Adv. 9, 65 (2019). https://doi.org/10.1039/C8RA09166H

    Article  CAS  Google Scholar 

  32. M. Bejar, R. Dhahri, F. El Halouani, E. Dhahri, Magnetocaloric effect at room temperature in powder of La0.5(CaSr)0.5MnO3. J. Alloys Compd. 414, 31–35 (2006). https://doi.org/10.1016/j.jallcom.2005.07.019

    Article  CAS  Google Scholar 

  33. Tao Sun, Shuang Zhao, FuquanJi, Xiang Liu, Enhanced room temperature MR and TCR in polycrystalline La0.67 (Ca0.33−xSrx) MnO3 ceramics by oxygen assisted sintering. Ceram. Int. 44, 2400–2406 (2018). https://doi.org/10.1016/j.ceramint.2017.10.209

    Article  CAS  Google Scholar 

  34. S. Hcini, M. Boudard, S. Zemni, Study of Na substitution in La0.67Ba0.33MnO3 perovskites. Appl. Phys. A 115, 985–996 (2014). https://doi.org/10.1007/s00339-013-7919-5

    Article  CAS  Google Scholar 

  35. D. Haruna Aliyu, M. Jose Alonso, P. de Patricia la, E. Walmir Pottker, Benedict Ita, Mar Garcia-Hernández, Antonio Hernando, Surface ferromagnetism in Pr0.5Ca0.5MnO3 nanoparticles as a consequence of local imbalance in Mn3+:Mn4+ ratio. Chem. Mater. 30(20), 7138–7145 (2018). https://doi.org/10.1021/acs.chemmater.8b03070

    Article  CAS  Google Scholar 

  36. B. Arayedh, S. Kallel, N. Kallel, O. Pena, Influence of non-magnetic and magnetic ions on the magneto caloric properties of La0.7Sr0.3Mn0.9M0.1O3 doped in the Mn sites by M = Cr, Sn, Ti. J. Magn. Magn. Mater. 361, 68–73 (2014). https://doi.org/10.1016/j.jmmm.2014.02.075

    Article  CAS  Google Scholar 

  37. S.K. Banerjee, On a generalised approach to first and second order magnetic transitions. Phys. Lett. 12, 16–17 (1964). https://doi.org/10.1016/0031-9163(64)91158-8

    Article  Google Scholar 

  38. E. Warburg, Magnetische untersuchungen. Ann. Phys. 249, 141–164 (1881). https://doi.org/10.1002/andp.18812490510

    Article  Google Scholar 

  39. V.K. Pecharsky, K.A. Gschneidner Jr., Giant magnetocaloric effect in Gd5 (Si2 Ge2). Phys. Rev. Lett. 78, 4494 (1997). https://doi.org/10.1103/PhysRevLett.78.4494

    Article  CAS  Google Scholar 

  40. E. Bruck, Developments in magnetocaloric refrigeration. J. Phys. D 38, R381–R391 (2005). https://doi.org/10.1088/0022-3727/38/23/R01

    Article  CAS  Google Scholar 

  41. A. H. Morrish, The Physical Principles of Magnetism (Wiley, New York) Chap.3(1965)

  42. khadija Dhahri, N.Dhahri, J. Dhahri, K. Taibi, E.K. Hlil, Effect of (Al, Sn) doping on structural, magnetic and magnetocaloric properties of La0.7Ca0.1Pb0.2Mn1-x-yAlxSnyO3 (0 ≤ x, y ≤ 0.075) manganites. J. Alloys Compd. 699, 619–626 (2017). https://doi.org/10.1016/j.jallcom.2016.12.324

    Article  CAS  Google Scholar 

  43. K.A. Gschneidner, V.K. Pecharsky, A.O. Tsokol, Recent developments in magnetocaloric materials. Rep. Prog. Phys. 68, 1479–1539 (2005)

    Article  CAS  Google Scholar 

  44. Li-an Han, Shao-fang Pang, Hua-ze Zhu, Peng-li Zhang, Jing Yang, Tao Zhang, Magnetocaloric effect and critical properties in La0.85Li0.15MnO3. J. Mater. Sci. 29, 20156–20161 (2018). https://doi.org/10.1007/s10854-018-0148-0

    Article  CAS  Google Scholar 

  45. S. Mnefgui, A. Dhahri, N. Dhahri, E.K. Hlil, J. Dhahri, The effect deficient of strontium on structural. magnetic and magnetocaloric properties of La0.57Nd0.1Sr0.33−xMnO3 (x = 0.1 and 0.15) manganite. J. Magn. Magn. Mater. 340, 91 (2013). https://doi.org/10.1016/j.jmmm.2013.03.030

    Article  CAS  Google Scholar 

  46. L.D. Landau, E.M. Lifshitz, Statistical Physics (Pergamon, New York, 1958)

    Google Scholar 

  47. N. Ouled Nasser, A. Ezaami, M. Koubaa, W. Cheikhrouhou–Kaoubaa, A. Cheikhrouhou, Characterization of the structural, magnetic and magnetocaloric properties of double perovskite La1.95Sr0.05BMnO6 (B = Ni and Co). J. Mater. Sci. 29, 20658–20667 (2018). https://doi.org/10.1007/s10854-018-0204-9

    Article  CAS  Google Scholar 

  48. S.T. Tabatabai Yazdi, N. Tajabor, D. Sanavi Khoshnoud, Magnetotransport and magnetoelastic effects in Co-doped La0.75Sr0.3MnO3 nonocrystalline perovskites. J. Magn. Magn.Mater. 322, 3131–3136 (2010). https://doi.org/10.1016/j.jmmm.2010.05.046

    Article  CAS  Google Scholar 

  49. H. Oesterreicher, F.T. Parker, Magnetic cooling near curie temperatures above 300 K. J. Appl. Phys. 55, 4334–4338 (1984). https://doi.org/10.1063/1.333046

    Article  CAS  Google Scholar 

  50. L. Li, K. Nishimura, W.D. Hutchison, K. Mori, Large magnetocaloric effect in La2/3Ca1/3Mn1−xSixO3 (x = 0.05–0.20) manganites. J. Phys. D 41, 175002 (2008)

    Article  Google Scholar 

  51. M. Khlifi, A. Tozri, E. Dhahri, E.K. Hlil, Effect of calcium deficiency on the critical behavior near the paramagnetic to ferromagnetic phase transition temperature in La0.8Ca0.2MnO3 oxides. J. Magn. Magn. Mater. 324, 2142 (2012). https://doi.org/10.1016/j.jmmm.2012.02.032

    Article  CAS  Google Scholar 

  52. Lei Zhang, Jiyu Fan, Li Li, Renwen Li, Langsheng Ling, Qu Zhe, Wei Tong, Shun Tan, Yuheng Zhang, Critical properties of the 3D-Heisenberg ferromagnet Cd Cr2Se4. EPL 91, 57001 (2010)

    Article  Google Scholar 

  53. B. Padmanabhan, H.L. Bhat, S. Elizabeth, S. Rößler, U.K. Rößler, K. Dörr, K.H. Müller, Critical properties in single crystals of Pr1−xPbxMnO3. Phys. Rev. B 75, 024419 (2007). https://doi.org/10.1103/PhysRevB.75.024419

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We gratefully thank Firas AYADI for making the X-ray mapping at GPM laboratory, Rouen, France.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Laajimi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Laajimi, K., Khlifi, M., Hlil, E.K. et al. Room temperature magnetocaloric effect and critical behavior in La0.67Ca0.23Sr0.1Mn0.98Ni0.02O3 oxide. J Mater Sci: Mater Electron 30, 11868–11877 (2019). https://doi.org/10.1007/s10854-019-01510-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01510-x

Navigation