Skip to main content
Log in

Magnetocaloric effect and critical properties in La0.85Li0.15MnO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The manganite La0.85Li0.15MnO3 (LLMO) was synthesized by standard ceramic preparation routes, its magnetocaloric effect and critical phenomenon have been studied by measurements of dc-magnetization. The sample is of single phase with a rhombohedral structure confirmed by the X-ray diffraction refinement. M–T data reveal that the LLMO shows a second-order magnetic transition with a TC of 235 K. Maximum values of magnetic entropy change (− ∆SMmax= 5.32 J K−1 Kg−1) and relative cooling power (RCP = 320.3 J kg−1) have been observed when the magnetic field change is up to 5 T. The LLMO compound with excellent magnetocaloric effect is expected to have effective applications in sub-room temperature range. In addition, the critical behavior around its TC is thoroughly analyzed using the field dependence of the magnetic entropy change. The determined values of critical exponents (β = 0.507, γ = 1.045, and δ = 2.982) are fairly close to the theoretical values of the mean field model (β = 0.5, γ = 1.0, and δ = 3.0), indicating the presence of long-range ferromagnetic ordering in this system. The validity of the obtained exponents is confirmed by the scaling theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. A.P. Ramirez, J. Phys. Condens. Matter. 9, 8171 (1997)

    Article  CAS  Google Scholar 

  2. Y. Tokura, Colossal Magnetoresistive Oxides (Gordon and Breach Science, New York, 2000)

    Google Scholar 

  3. J.M.D. Coey, M. Viret, S. Von Molnar, Adv. Phys. 48, 167 (1999)

    Article  CAS  Google Scholar 

  4. S.L. Ye, W.H. Song, J.M. Dai, K.Y. Wang, S.G. Wang, J.J. Du, Y.P. Sun, J. Fang, J.L. Chen, B.J. Gao, J. Appl. Phys. 90, 2943 (2001)

    Article  CAS  Google Scholar 

  5. T.K. Soma Das, Dey, Solid State Commun. 134, 837 (2005)

    Article  Google Scholar 

  6. S. Ravi, M. Kar, Phys. B 348, 169 (2004)

    Article  CAS  Google Scholar 

  7. C. Zener, Phys. Rev. 82, 403 (1951)

    Article  CAS  Google Scholar 

  8. A.J. Mills, P.B. Littlewood, B.I. Shraiman, Phys. Rev. Lett. 74, 5144 (1995)

    Article  Google Scholar 

  9. Z. Juan, L. Lirong, W. Gui, Adv. Powder Technol. 22, 68 (2011)

    Article  Google Scholar 

  10. S. Das, T.K. Dey, J. Phys. D Appl. Phys. 40, 1855 (2007)

    Article  CAS  Google Scholar 

  11. I.K. Kamilov, A.G. Gamzatov, A.M. Aliev, A.B. Batdalov, A.A. Aliverdiev, S.B. Abdulvagidov, O.V. Melnikov, O.Y. Gorbenko, A.R. Kaul, J. Phys. D Appl. Phys. 40, 4413 (2007)

    Article  CAS  Google Scholar 

  12. A.M. Aliev, A.G. Gamzatov, A.B. Batdalov, A.S. Mankevich, I.E. Korsakov, Phys. B 406, 885 (2011)

    Article  CAS  Google Scholar 

  13. S.N. Barilo, G.L. Bychkov, V.I. Gatalskaya, L.A. Kurochkin, V.P. Sokol, H. Szymczak, R. Szymczak, M. Baranless, Low Temp. phys. 27, 288 (2001)

    Article  CAS  Google Scholar 

  14. X.L. Wang, S.J. Kennedy, P. Gehringer, W. Lang, H.K. Liu, S.X. Dou, J. Appl. Phys. 83, 7177 (1998)

    Article  CAS  Google Scholar 

  15. A.M. Ahmed, G. Papavassiliou, H.F. Mohamed, E.M.M. Ibrahim, J. Magn. Magn. Mater. 392, 27 (2015)

    Article  CAS  Google Scholar 

  16. H.M. Rietveld, J. Appl. Cryst. 2, 65 (1969)

    Article  CAS  Google Scholar 

  17. S.K. Banerjee, Phys. Lett. 12, 16 (1964)

    Article  Google Scholar 

  18. K.A. Gschneidner, H. Takeya Jr., J.O. Moorman, V.K. Pecharsky, Appt. Phys. Lett. 64, 253 (1994)

    Article  CAS  Google Scholar 

  19. M.H. Phan, S.C. Yu, N.H. Hur, Y.H. Yeong, J. Appl. Phys. 96, 1154 (2004)

    Article  CAS  Google Scholar 

  20. E. Bruck, J. Phys. D: Appl. Phys 38, R381 (2005)

    Article  Google Scholar 

  21. M.H. Phan, S.C. Yu, Review of the magnetocaloric effect in manganite materials. J. Magn. Magn. Mater. 308, 325 (2007)

    Article  CAS  Google Scholar 

  22. J. Lyubina, J. Phys. D Appl. Phys. 50, 053002 (2017)

    Article  Google Scholar 

  23. D. Hou, C. Yue, Y. Bai, Q. Liu, X. Zhao, G. Tang, Solid State Commun. 140, 459 (2006)

    Article  CAS  Google Scholar 

  24. S. Das, T.K. Dey, J. Alloys Compd. 440, 30 (2007)

    Article  CAS  Google Scholar 

  25. Y. Regaieg, M. Koubaaa, W. Cheikhrouhou Koubaaa, A. Cheikhrouhou, L. Sicard, S. Ammar-Merah, F. Herbst, Mater. Chem. Phys. 132, 839 (2012)

    Article  CAS  Google Scholar 

  26. J.C. Debnath, R. Zeng, J.H. Kim, S.X. Dou, J. Alloys Compd. 509, 3699 (2011)

    Article  CAS  Google Scholar 

  27. W. Jian, J. Alloys Compd. 476, 859 (2009)

    Article  Google Scholar 

  28. A.H. EI-Sayed, M.A. Hamad, J. Supercond. Nov. Magn. (2018). https://doi.org/10.1007/s10948-018-4699-3

    Article  Google Scholar 

  29. V.K. Pecharsky, K.A. Gschneidner Jr., Phys. Rev. Lett. 78, 4494 (1997)

    Article  CAS  Google Scholar 

  30. M. Sahana, U.K. Rössler, N. Ghosh, S. Elizabeth, H.L. Bhat, K. Dörr, D. Eckert, M. Wolf, K.H. Müller, Phys. Rev. B 68, 144408 (2003)

    Article  Google Scholar 

  31. T.L. Phan, Y.D. Zhang, P. Zhang, T.D. Thanh, S.C. Yu, J. Appl. Phys. 112, 093906 (2012)

    Article  Google Scholar 

  32. J. Fan, L. Pi, L. Zhang, T. Wei, L. Ling, B. Hong, Y. Shi, W. Zhang, D. Lu, Y. Zhang, Appl. Phys. Lett. 98, 072508 (2011)

    Article  Google Scholar 

  33. M.H. Phan, V. Franco, A. Chaturvedi, S. Stefanoski, G.S. Nolas, H. Srikanth, Phys. Rev. B 84, 054436 (2011)

    Article  Google Scholar 

  34. L. Xu, J. Fan, W. Sun, Y. Zhu, D. Hu, J. Liu, Y. Ji, D. Shi, H. Yang, Appl. Phys. Lett. 111, 052406 (2017)

    Article  Google Scholar 

  35. L. Xu, J. Fan, W. Tong, D. Hu, L. Zhang, L. Ling, L. Pi, Y. Zhang, H. Yang, J. Mater. Sci. 53, 323 (2018)

    Article  Google Scholar 

  36. L. Xu, H. Han, J.D. Shi, D. Hu, H. Du, L.Y. Zhang, H. Yang, Euro. Phys. Lett. 117, 47004 (2017)

    Article  Google Scholar 

  37. H. Oesterreicher, F.T. Parker, J. Appl. Phys. 55, 4334 (1984)

    Article  CAS  Google Scholar 

  38. V. Franco, J.S. Blázquez, A. Conde, Appl. Phys. Lett. 89, 222512 (2006)

    Article  Google Scholar 

  39. B. Widom, J. Chem. Phys. 43, 3898 (1965)

    Article  Google Scholar 

  40. Za. Mohamed, E. Tka, J. Dhahri, E.K. Hlil, J. Alloy. Compd. 688, 1260 (2016)

    Article  CAS  Google Scholar 

  41. A.K. Pramanik, A. Banerjee, Phys. Rev. B 79, 214426 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China under grant No. 61201088 and 11605133, the Scientific Research Program Funded by ShaanXi Provincial Education Commission (Program no. 2010JK674), and Foundation Industrial Public Relation Project of Shaanxi Technology Committee (2016GY-041).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-an Han.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, La., Pang, Sf., Zhu, Hz. et al. Magnetocaloric effect and critical properties in La0.85Li0.15MnO3. J Mater Sci: Mater Electron 29, 20156–20161 (2018). https://doi.org/10.1007/s10854-018-0148-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-0148-0

Navigation