Skip to main content
Log in

The effects of carbonization conditions on electrochemical performance of attapulgite-based anode material for lithium-ion batteries

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, attapulgite-based anode materials with different polyacrylonitrile contents were fabricated. The effect of polyacrylonitrile contents on electrochemical performances of the anode materials was systematically investigated. The optimal attapulgite/polyacrylonitrile ratio for the anode material was selected via comparing with electrochemical specific capacity at the same current density. It was shown that the specific capacity of the sample with 20 wt% polyacrylonitrile could reach a maximum value of 446.5 mAh g−1 at the same current density. Furthermore, the effect of carbonization temperatures on electrochemical properties of the anode materials with 20 wt% polyacrylonitrile was investigated. The structural features of the carbonized samples were characterized by Fourier transform infrared spectroscopy, X-ray diffraction, Brunauer–Emmett–Teller, field emission scanning electron microscopy, transmission electron microscopy, energy dispersive spectrometer and X-ray photoelectron spectroscopy. The discharge specific capacity of the anode material carbonized at 800 °C reached the maximum value of 446.5 mAh g−1 at a current density of 0.1 A g−1 at the 50th cycle. The coulombic efficiency of the AT-based anode material carbonized at 800 °C was 99.8% at the current density of 0.5 A g−1 at the 300th cycle. The anode material carbonized at 800 °C with a mass loading of 0.85 mg cm−2 had excellent electrochemical conductivity and rate capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Yu, G. Li, S. Zhou, X. Chen, H.W. Lee, W. Yang, Carbon 120, 397 (2017)

    Article  Google Scholar 

  2. W. Alkarmo, A. Aqil, F. Ouhib, J.M. Thomassin, D. Mazouzi, D. Guyomard, C. Detrembleur, C. Jerome, New J. Chem. 41, 10555 (2017)

    Article  Google Scholar 

  3. K. Wenelska, A. Ottmann, D. Moszynski, P. Schneider, R. Klingeler, E. Mijowska, J. Colloid Interface Sci. 511, 203 (2018)

    Article  Google Scholar 

  4. C. Zhang, Z. Huang, W. Lv, Q. Yun, F. Kang, Q.H. Yang, Carbon 123, 744 (2017)

    Article  Google Scholar 

  5. Q. Xu, J.Y. Li, J.K. Sun, Y.X. Yin, L.J. Wan, Y.G. Guo, Adv. Energy Mater. 7, 1601481 (2017)

    Article  Google Scholar 

  6. C. Ma, W. Zhang, Y.S. He, Q. Gong, H. Che, Z.F. Ma, Nanoscale 8, 4121 (2016)

    Article  Google Scholar 

  7. D.G. Lim, K. Kim, M. Razdan, R. Diaz, S. Osswald, V.G. Pol, Carbon 121, 134 (2017)

    Article  Google Scholar 

  8. O. Fromm, A. Heckmann, U.C. Rodehorst, J. Frerichs, D. Becker, M. Winter, T. Placke, Carbon 128, 147 (2018)

    Article  Google Scholar 

  9. G. Ali, G. Rahman, K.Y. Chung, Electrochim. Acta 238, 49 (2017)

    Article  Google Scholar 

  10. B. Lee, T. Liu, S.K. Kim, H. Chang, K. Eom, L. Xie, S. Chen, H.D. Jang, S.W. Lee, Carbon 119, 438 (2017)

    Article  Google Scholar 

  11. D. Liu, Y. Zhao, R. Tan, L.L. Tian, Y. Liu, H. Chen, F. Pan, Nano Energy 36, 206 (2017)

    Article  Google Scholar 

  12. S. Lawes, Q. Sun, A. Lushington, B. Xiao, Y. Liu, X. Sun, Nano Energy 36, 313 (2017)

    Article  Google Scholar 

  13. T. Xu, J. Zhang, C. Yang, H. Luo, B. Xia, X. Xie, J. Alloys Compd. 738, 323 (2018)

    Article  Google Scholar 

  14. M. Ge, X. Fang, J. Rong, C. Zhou, Nanotechnology 24, 422001 (2013)

    Article  Google Scholar 

  15. X. Zuo, J. Zhu, P. Muller-Buschbaum, Y.J. Cheng, Nano Energy 31, 113 (2017)

    Article  Google Scholar 

  16. T. Chen, J. Wu, Q. Zhang, X. Su, J. Power Sources 363, 126 (2017)

    Article  Google Scholar 

  17. J. Zhang, C. Zhang, Z. Liu, J. Zheng, Y. Zuo, C. Xue, C. Li, B. Cheng, J. Power Sources 339, 86 (2017)

    Article  Google Scholar 

  18. L. Shi, W. Wang, A. Wang, K. Yuan, Z. Jin, Y. Yang, J. Power Sources 318, 184 (2016)

    Article  Google Scholar 

  19. D. Jia, K. Wang, J. Huang, Chem. Eng. J. 317, 673 (2017)

    Article  Google Scholar 

  20. H. Chen, X. Hou, F. Chen, S. Wang, B. Wu, Q. Ru, H. Qin, Y. Xia, Carbon 130, 433 (2018)

    Article  Google Scholar 

  21. T. Chen, J. Hu, L. Zhang, J. Pan, Y. Liu, Y.T. Cheng, J. Power Sources 362, 236 (2017)

    Article  Google Scholar 

  22. W. Wu, Y. Liang, H. Ma, Y. Peng, H. Yang, Electrochim. Acta 187, 473 (2016)

    Article  Google Scholar 

  23. J. Cui, Y. Cui, S. Li, H. Sun, Z. Wen, J. Sun, ACS Appl. Mater. Interfaces. 8, 30239 (2016)

    Article  Google Scholar 

  24. P. Lv, H. Zhao, C. Gao, T. Zhang, X. Liu, Electrochim. Acta 152, 345 (2015)

    Article  Google Scholar 

  25. P. Lv, H. Zhao, C. Gao, Z. Du, J. Wang, X. Liu, J. Power Sources 274, 542 (2015)

    Article  Google Scholar 

  26. W. Cheng, F. Rechberger, G. Ilari, H. Ma, W.I. Lin, M. Niederberger, Chem. Sci. 6, 6908 (2015)

    Article  Google Scholar 

  27. L. Sun, T. Su, L. Xu, H.B. Du, Phys. Chem. Chem. Phys. 18, 1521 (2016)

    Article  Google Scholar 

  28. J. Wang, H. Fan, Y. Shen, C. Li, G. Wang, Chem. Eng. J. 357, 376 (2019)

    Article  Google Scholar 

  29. Y. Lan, D. Chen, J. Mater. Sci. 53, 2054 (2017)

    Article  Google Scholar 

  30. Y. Zhang, Y. Pan, Y. Chen, B.L. Lucht, A. Bose, Carbon 112, 72 (2017)

    Article  Google Scholar 

  31. Y. Zhu, D. Chen, Mater. Des. 113, 60 (2017)

    Article  Google Scholar 

  32. C. Nita, J. Fullenwarth, L. Monconduit, J. Meins, P. Fioux, J. Parmentier, C. Ghimbeu, Carbon 143, 598 (2019)

    Article  Google Scholar 

  33. M. Ko, S. Chae, J. Ma, N. Kim, H.W. Lee, Y. Cui, J. Cho, Nat. Energy 1, 16113 (2016)

    Article  Google Scholar 

  34. S. Lei, S. Wu, A. Gao, W. Cao, C. Li, L. Xu, High Perform. Polym. 29, 1097 (2016)

    Article  Google Scholar 

  35. M. Jing, C. Wang, Y. Bai, B. Zhu, Y. Wang, Polym. Bull. 58, 541 (2006)

    Article  Google Scholar 

  36. D. Gao, Y. Zhang, B. Lyu, P. Wang, J. Ma, Carbohydr. Polym. 206, 245 (2019)

    Article  Google Scholar 

  37. S. Patel, M. Konar, H. Sahoo, G. Hota, Nanotechnology 30, 205704 (2019)

    Article  Google Scholar 

  38. L. Boudriche, R. Calvet, B. Hamdi, H. Balard, Colloids Surf. A 399, 1 (2012)

    Article  Google Scholar 

  39. L. Huang, Q. Guan, J. Cheng, C. Li, W. Ni, Z. Wang, Y. Zhang, B. Wang, Chem. Eng. J. 334, 682 (2018)

    Article  Google Scholar 

  40. F. Wang, C. Li, J. Zhong, Z. Yang, Carbon 128, 277 (2018)

    Article  Google Scholar 

  41. M. Sohn, D.S. Kim, H.I. Park, J.H. Kim, H. Kim, Electrochim. Acta 196, 197 (2016)

    Article  Google Scholar 

  42. C. Jian, E. Cho, J. Huang, J. Huang, J. Chou, B. Ho, K. Lee, Y. Hsiao, J. Alloys Compd. 773, 376 (2019)

    Article  Google Scholar 

  43. M.G. Jeong, M. Islam, H.L. Du, Y.S. Lee, H.H. Sun, W. Choi, Electrochim. Acta 209, 299 (2016)

    Article  Google Scholar 

  44. G. Liang, X. Qin, J. Zou, L. Luo, Y. Wang, M. Wu, H. Zhu, G. Chen, F. Kang, B. Li, Carbon 127, 424 (2018)

    Article  Google Scholar 

  45. X. Zhang, L. Huang, P. Zeng, L. Wu, Q. Shen, Z. Gao, Y. Chen, Chem. Eng. J. 357, 625 (2019)

    Article  Google Scholar 

  46. H. Ma, H. Jiang, Y. Jin, L. Dang, Q. Lu, F. Gao, Carbon 105, 586 (2016)

    Article  Google Scholar 

  47. J.M. Kim, V. Guccini, K. Seong, J. Oh, G. Salazar-Alvarez, Y. Piao, Carbon 118, 8 (2017)

    Article  Google Scholar 

  48. D. Wang, M. Gao, H. Pan, J. Wang, Y. Liu, J. Power Sources 256, 190 (2014)

    Article  Google Scholar 

  49. D. Kwon, J. Ryu, M. Shin, G. Song, D. Hong, K.S. Kim, S. Park, J. Power Sources 374, 217 (2018)

    Article  Google Scholar 

  50. M. Jiao, J. Qi, Z. Shi, C. Wang, J. Mater. Sci. 53, 2149 (2017)

    Article  Google Scholar 

  51. L. Laffont, M. Monthioux, V. Serin, R.B. Mathur, C. Guimon, M.F. Guimon, Carbon 42, 2485 (2004)

    Article  Google Scholar 

  52. B. Zhang, Y. Yu, Z.L. Xu, S. Abouali, M. Akbari, Y.B. He, F. Kang, J.K. Kim, Adv. Energy Mater. 4, 1301448 (2014)

    Article  Google Scholar 

  53. Z. Qiu, Y. Lin, H. Xin, P. Han, D. Li, B. Yang, P. Li, S. Ullah, H. Fan, C. Zhu, J. Xu, Carbon 126, 85 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (CUSF-DH-D-2018014).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dajun Chen.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1022 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lan, Y., Chen, D. The effects of carbonization conditions on electrochemical performance of attapulgite-based anode material for lithium-ion batteries. J Mater Sci: Mater Electron 30, 10342–10351 (2019). https://doi.org/10.1007/s10854-019-01372-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01372-3

Navigation