Skip to main content

Advertisement

Log in

Design and preparation of integrated voltage divider for silicon drift detector by ion implantation

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An integrated voltage divider, providing a transverse electric field, plays an important role in silicon drift detector (SDD). In this paper, an curve-style voltage divider is proposed and two dimensional numerical simulation is done to investigate the optimized width and length of the voltage divider. Low-energy ion implantation is applied to prepare the silicon based voltage divider for SDD. The influence of the implantation conditions and annealing conditions on the sheet resistance of the implanted silicon is also systematically analyzed. The results show that the sheet resistance of the voltage divider with an implantation dose of 5e13 cm−2 and an implantation energy of 30 keV is the most stable in different position with a 6.9% tolerance over the wafer. While for the voltage dividers with an implantation dose of 1e13 cm−2 and an implantation energy of 30 and 100 keV, the tolerance is 13.1% and 12.1%, respectively. Finally, a uniform drop in voltage between the drift rings is achieved, creating a uniform drift electric field within the detector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. E. Gatti, P. Rehak, Review of semiconductor drift detectors. Nucl. Instrum. Methods Phys. Res. A 541, 47–60 (2005)

    Article  Google Scholar 

  2. E. A. Hijzen. Design and fabrication of silicon drift detector. Ph. D. Thesis, Proefschrift Technische Universiteit Delft.-Met bibliogr.-Met samenvatting in het Nederlands. 1995

  3. N. Golshani, J. Derakhshandeh, C.I.M. Beenakker, R. Ishihara, High-ohmic resistors fabricated by PureB layer for silicon drift detectors applications. Solid-State Electron. 105, 6–11 (2015)

    Article  Google Scholar 

  4. N. Golshani, Development of Silicon Drift Detectors using Boron layer technology. Ph. D. Thesis, Delft University of Technology, with summary in Dutch, 2015

  5. Q. Li, K. Tao, Y. Sun, R. Jia, S.M. Wang, Z. Jin, X.Y. Liu, Two dimensional simulation studies on amorphous silicon stack as front surface field for interdigitated back contact solar cells. Vacuum 125, 56–64 (2016)

    Article  Google Scholar 

  6. W.L. Yang, T.Y. Lin, S.S. Lien, L. Wang, Low-energy ion implantation for shallow junction crystalline silicon solar cell. Sol. Energy 130, 25–32 (2016)

    Article  Google Scholar 

  7. S.M. Ku, Boron-implanted silicon resistors. Solid-State Electron. 20, 803–812 (1977)

    Article  Google Scholar 

  8. H. Paul, Nuclear stopping power and its impact on the determination of electronic stopping power. AIP Conf. Proc. 1525, 309–313 (2013)

    Article  Google Scholar 

  9. J.D. Plummer, M.D. Deal, P.B. Griffin, Silicon VLSI Technology: Fundamentals, Practice and Modeling (Prentice Hall, Upper Saddle River, 2001)

    Google Scholar 

  10. J.F. Ziegler, Stopping of energetic light ions in elemental matter. J. Appl. Phys. 85, 1249–1272 (1999)

    Article  Google Scholar 

  11. H. Boo, J.-H. Lee, M.G. Kang, K.D. Lee, S. Kim, H.C. Hwang et al., Effect of high-temperature annealing on ion-implanted silicon solar cells. Int. J. Photoenergy 2012, 1–6 (2012)

    Article  Google Scholar 

  12. J. Marcon, L. Ihaddadene-Le Coq, K. Masmoudi, K. Ketata, An investigation on the modeling of boron-enhanced diffusion of ultralow energy implanted boron in silicon. Mater. Sci. Eng. B 124–125, 415–418 (2005)

    Article  Google Scholar 

  13. N. Sadeghi, S. Mirabbasi, A technique for implementing monolithic resistors with near-zero temperature coefficient. IEEE CCECE 2011, 1292–1295 (2011)

    Google Scholar 

  14. K.R. Whight, P. Blood, K.H. Nicholas, Implanted high value resistors. Solid-State Electron. 19, 1021–1027 (1976)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank High Frequency and High Voltage Center of Institute of Microelectronics, Chinese Academy of Sciences and all staff of solar cells group for their support. This work were supported by NSFC (Grant Nos. 51702355, 61674167), the national key research program (Grant Nos. 2018YFB1500500, 2018YFB1500200) and JKW Project 31512060106.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuming Xue, Rui Jia or Ke Tao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, S., Xue, Y., Jia, R. et al. Design and preparation of integrated voltage divider for silicon drift detector by ion implantation. J Mater Sci: Mater Electron 30, 10152–10161 (2019). https://doi.org/10.1007/s10854-019-01351-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01351-8

Navigation