Skip to main content
Log in

Role of surface ligands on CdSe/CdS QDs in affecting the charge separation and photocatalytic behavior in reducing the graphene oxide

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper, the photocatalytic behavior of CdSe/CdS quantum dots (QDs) in reducing the graphene oxide (GO) with different surface ligands was investigated. Here, three surface ligands of different functional groups (oleic acid, poly (acrylic acid polymers) and S2−) were selected to study the influence of surface ligands on photocatalytic behavior of the CdSe/CdS QDs. Meanwhile, the obtained samples can be used as photocatalyst, and the photocatalytic activity was evaluated by photodegrading a methylene blue solution. It turned out that the QDs–S2−–GO sample showed the highest photocatalytic activity under visible-light irradiation. Different surface ligand has different influence on the charge separation efficiency, which has different influence on photocatalytic behavior. The results show that the photocatalytic behavior is highly dependent on the electron attracting ability of the surface ligands on the CdSe/CdS QDs. Finally, a possible photocatalytic mechanism is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. A. Fujishima, K. Honda, Nature 238, 37 (1972)

    Article  Google Scholar 

  2. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, Y. Taga, Science 293, 269 (2001)

    Article  Google Scholar 

  3. I.K. Konstantinou, T.A. Albanis, Appl. Catal. B 49, 1 (2004)

    Article  Google Scholar 

  4. H. Tong, S.X. Ouyang, Y.P. Bi, N. Umezawa, M. Oshikiri, J.H. Ye, Adv. Mater. 24, 229 (2012)

    Article  Google Scholar 

  5. Y. Xu, M.A.A. Schoonen, Am. Mineral. 85, 543 (2000)

    Article  Google Scholar 

  6. C.S. Turchi, D.F. Ollis, J. Catal. 122, 178 (1990)

    Article  Google Scholar 

  7. C.Z. Luo, X.H. Ren, Z.G. Dai, Y.P. Zhang, X. Qi, C.X. Pan, Acs Appl. Mater. Inter. 9, 23265 (2017)

    Article  Google Scholar 

  8. S.J. Yu, A.J. Wilson, G. Kumari, X.Q. Zhang, P.K. Jain, Acs Energy Lett. 2, 2058 (2017)

    Article  Google Scholar 

  9. M. Eghbali-Arani, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, S. Pourmasoud, J. Electron. Mater. 47, 3757 (2018)

    Article  Google Scholar 

  10. S.S. Hosseinpour-Mashkani, A. Sobhani-Nasab, J. Mater. Sci.: Mater. Electron. 28, 16459 (2017)

    Google Scholar 

  11. H. Kooshki, A. Sobhani-Nasab, M. Eghbali-Arani, F. Ahmadi, V. Ameri, M. Rahimi-Nasrabadi, Sep. Purif. Technol. 211, 873 (2019)

    Article  Google Scholar 

  12. F. Sedighi, M. Esmaeili-Zare, A. Sobhani-Nasab, M. Behpour, J. Mater. Sci.: Mater. Electron. 29, 13737 (2018)

    Google Scholar 

  13. A. Sobhani-Nasab, M. Behpour, J. Mater. Sci.: Mater. Electron. 27, 11946 (2016)

    Google Scholar 

  14. A. Sobhani-Nasab, S. Pourmasoud, F. Ahmadi, M. Wysokowsk, T. Jesionowski, H. Ehrlich, M. Rahimi-Nasrabadi, Mater. Lett. 238, 159 (2019)

    Article  Google Scholar 

  15. A. Sobhani-Nasab, M. Rangraz-Jeddy, A. Avanes, M. Salavati-Niasari, J. Mater. Sci.: Mater. Electron. 26, 9552 (2015)

    Google Scholar 

  16. S.D. Sun, P.J. Li, S.H. Liang, Z.M. Yang, Nanoscale 9, 11357 (2017)

    Article  Google Scholar 

  17. S. Kaushal, S.K. Mittal, P. Singh, Orient. J. Chem. 33, 1726 (2017)

    Article  Google Scholar 

  18. A. Piyadasa, S.B. Wang, P.X. Gao, Semicond. Sci. Technol. 32, 073001 (2017)

    Article  Google Scholar 

  19. Y.K. Abdel-Monem, J. Mater. Sci.: Mater. Electron. 27, 5723 (2016)

    Google Scholar 

  20. Y.K. Abdel-Monem, S.M. Emam, H.M.Y. Okda, J. Mater. Sci.: Mater. Electron. 28, 2923 (2017)

    Google Scholar 

  21. F. Azeez, E. Al-Hetlani, M. Arafa, Y. Abdelmonem, A.A. Nazeer, M.O. Amin, M. Madkour, Sci. Rep. UK 8, 7104 (2018)

    Article  Google Scholar 

  22. A. Bumajdad, M. Madkour, Y. Abdel-Moneam, M. El-Kemary, J. Mater. Sci. 49, 1743 (2014)

    Article  Google Scholar 

  23. M. Madkour, Y.K. Abdel-Monem, F. Al Sagheer, Ind. Eng. Chem. Res. 55, 12733 (2016)

    Article  Google Scholar 

  24. A. Kagkoura, T. Skaltsas, N. Tagmatarchis, Chem. Eur. J. 23, 12967 (2017)

    Article  Google Scholar 

  25. Y. Nosaka, A.Y. Nosaka, Chem. Rev. 117, 11302 (2017)

    Article  Google Scholar 

  26. X. Zheng, Z.P. Shen, L. Shi, R. Cheng, D.H. Yuan, Catalysts 7, 224 (2017)

    Article  Google Scholar 

  27. Q.X. Peng, D. Xue, S.Z. Zhan, C.L. Ni, Appl. Catal. B 219, 353 (2017)

    Article  Google Scholar 

  28. W.T. Yao, S.H. Yu, S.J. Liu, J.P. Chen, X.M. Liu, F.Q. Li, J. Phys. Chem. B 110, 11704 (2006)

    Article  Google Scholar 

  29. Z.J. Li, X.B. Li, J.J. Wang, S. Yu, C.B. Li, C.H. Tung, L.Z. Wu, Energy Environ. Sci. 6, 465 (2013)

    Article  Google Scholar 

  30. M. Kaur, C.M. Nagaraja, RSC Adv. 6, S6790 (2016)

    Google Scholar 

  31. W. Jiang, Z.M. Wu, X.N. Yue, S.J. Yuan, H.F. Lu, B. Liang, RSC Adv. 5, 24064 (2015)

    Article  Google Scholar 

  32. P. Wang, M.M. Wang, J. Zhang, C.P. Li, X.L. Xu, Y.D. Jin, ACS Appl. Mater. Interface 9, 35712 (2017)

    Article  Google Scholar 

  33. F. Qiu, Z.J. Han, J.J. Peterson, M.Y. Odoi, K.L. Sowers, T.D. Krauss, Nano Lett. 16, 5347 (2016)

    Article  Google Scholar 

  34. S. Azimi, A. Nezamzadeh-Ejhieh, J Mol. Catal. A 408, 152 (2015)

    Article  Google Scholar 

  35. Y.S. Li, Z.Y. Song, J.T. Qin, H.T. Huang, Y. Han, Chinese. J. Anal. Chem. 44, 61 (2016)

    Google Scholar 

  36. A. Nag, M.V. Kovalenko, J.-S. Lee, W. Liu, B. Spokoyny, D.V. Talapin, J. Am. Chem. Soc. 133, 10612 (2011)

    Article  Google Scholar 

  37. A. Nag, D.S. Chung, D.S. Dolzhnikov, N.M. Dimitrijevic, S. Chattopadhyay, T. Shibata, D.V. Talapin, J. Am. Chem. Soc. 134, 13604 (2012)

    Article  Google Scholar 

  38. M. Soreni-Harari, N. Yaacobi-Gross, D. Steiner, A. Aharoni, U. Banin, O. Millo, N. Tessler, Nano Lett. 8, 678 (2008)

    Article  Google Scholar 

  39. E. Zillner, S. Fengler, P. Niyamakom, F. Rauscher, K. Köhler, T. Dittrich, J. Phys. Chem. C 116, 16747 (2012)

    Article  Google Scholar 

  40. D.A. Hines, P.V. Kamat, J. Phys. Chem. C 117, 14418 (2013)

    Article  Google Scholar 

  41. B.P. Bloom, L.-B. Zhao, Y. Wang, D.H. Waldeck, R. Liu, P. Zhang, D.N. Beratan, J. Phys. Chem. C 117, 22401 (2013)

    Article  Google Scholar 

  42. A. Zhang, C. Dong, H. Liu, J. Ren, J. Phys. Chem. C 117, 24592 (2013)

    Article  Google Scholar 

  43. P.R. Brown, D. Kim, R.R. Lunt, N. Zhao, M.G. Bawendi, J.C. Grossman, V. Bulović, ACS Nano 8, 5863 (2014)

    Article  Google Scholar 

  44. J.J. Li, Y.A. Wang, W. Guo, J.C. Keay, T.D. Mishima, M.B. Johnson, X. Peng, J. Am. Chem. Soc. 125, 12567 (2003)

    Article  Google Scholar 

  45. W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  46. P. Wang, J. Zhang, H.L. He, X.T. Xua, Y.D. Jin, Nanoscale 6, 13470 (2014)

    Article  Google Scholar 

  47. J. Zhang, H. Yang, G. Shen, P. Cheng, J. Zhang, S. Guo, Chem. Commun. (Camb.) 46, 1112 (2010)

    Article  Google Scholar 

  48. Z. Xu, J. Yu, Nanoscale 3, 3138 (2011)

    Article  Google Scholar 

  49. J. Yu, G. Dai, B. Huang, J. Phys. Chem. C 113, 16394 (2009)

    Article  Google Scholar 

  50. P. Wang, Z.J. Guan, Q.Y. Li, J.J. Yang, J. Mater. Sci. 53, 774 (2018)

    Article  Google Scholar 

  51. Y. Ben-Shahar, F. Scotognella, N. Waiskopf, I. Kriegel, S. Dal Conte, G. Cerullo, U. Banin, Small 11, 462 (2015)

    Article  Google Scholar 

  52. Y.B. Du, X.Y. Xu, L. Lin, M.Y. Ge, D.N. He, J. Mater. Sci. 53, 385 (2018)

    Article  Google Scholar 

  53. F.S. Ghoreishi, V. Ahmadi, M. Samadpour, J. Power Sources 271, 195 (2014)

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by the Development Program of Science and Technology of Jilin Province (Grant No. 20170520134JH); the project of Jilin Province Department of Education (Grant No. JJKH20191016KJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Limin Chang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 98 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, X., Chen, L., Zhao, C. et al. Role of surface ligands on CdSe/CdS QDs in affecting the charge separation and photocatalytic behavior in reducing the graphene oxide. J Mater Sci: Mater Electron 30, 9363–9371 (2019). https://doi.org/10.1007/s10854-019-01266-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01266-4

Navigation