Skip to main content
Log in

Evaluation of temperature dependent electrical transport parameters in Fe3O4/SiO2/n-Si metal–insulator-semiconductor (MIS) type Schottky barrier heterojunction in a wide temperature range

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this manuscript, we reported the electrical characteristics and structural analysis of In/Fe3O4/SiO2/n-Si/In MIS-type SBD heterostructure comprehensively in the temperature range 10–300 K using I–V, XRD, TEM and AFM measurements. Pulsed laser deposition in association with DC magnetron sputtering techniques has been utilized to fabricate the proposed In/Fe3O4/SiO2/n-Si/In heterojunction. The fabricated heterojunction revealed that the I–V curves are non-linear and asymmetric in nature. Using these I–V curves in the forward-bias region, SBH is calculated as 0.02 eV at 10 K and 0.74 eV at 300 K. On the other hand, the ideality factor (n) value was calculated as 7.55 at 10 K and 1.37 at 300 K. The series resistance (RS) values were also evaluated using Chenug’s method and the values were 1121 Ω at 10 K and 334 Ω at 300 K. The dependence of important diode parameters such as SBH, ‘n’ and ‘RS’ on measurement temperature was effectively explained firstly on account of triple Gaussian distribution of barrier heights with the help of barrier inhomogeneities of the prepared heterojunction. The value of the Richardson’s constant calculated for the fabricated In/Fe3O4/SiO2/n-Si/In heterojunction in the 110–300 K temperature regime was calculated to be 115.26 A/cm2K2 and is approximately equal to the theoretical value of 120 A/cm2K2 for n-type Si. In addition, the higher value (greater than one) of ideality factor at all operating temperatures from 10–300 K demonstrated that the probable current transport across the Fe3O4/SiO2/n-Si junction is not only due to the thermionic emission (TE) mechanism. Hence, to reveal the origin of current transport mechanism i.e., other than TE, we noticed that the governing current transport process through the fabricated hetrojunction is mainly due to the tunneling assisted Poole–Frenkel class of emission across the Fe3O4/SiO2/n-Si junction which is found to be temperature-dependent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. A.R. Deniz, Z. Caldiran, Y. Sahin, M. Sinoforoglu, O. Metin, K. Meral, S. Aydogan, The synthesis of the Fe3O4 nanoparticles and the analysis of the current–voltage measurements on Au/Fe3O4/p-Si schottky contacts in a wide temperature range. Metall. Mater. Trans. A 44A, 3809–3814 (2013)

    Article  Google Scholar 

  2. M. Sharma, S.K. Tripathi, Study of barrier inhomogeneities in I-V-T and C-V-T characteristics of Al/Al2O3/PVA:n-ZnSe metal-oxide-semiconductor diode. J. Appl. Phys. 112, 024521 (2012)

    Article  Google Scholar 

  3. S.A. Yerişkin, M. Balbaş, I. Orak, The effects of (graphene doped-PVA) interlayer on the determinative electrical parameters of the Au/n-Si (MS) structures at room temperature. J Mater Sci. (2017). https://doi.org/10.1007/s10854-017-7255-1

    Google Scholar 

  4. A. Kaya, E. Marıl, S. Altındal, I. Usluc, The comparative electrical characteristics of Au/n-Si (MS) diodes with and without a 2% graphene cobalt-doped Ca3Co4Ga0.001Ox interfacial layer at room temperature. Microelectron. Eng. 149, 166–171 (2016)

    Article  Google Scholar 

  5. Y. Cui, Y. Tian, W. Liu, Y. Li, R. Wang, T. Wu, Interface-dependent rectifying TbMnO3-based heterojunctions. AIP Adv. 1, 042129 (2011)

    Article  Google Scholar 

  6. H. Li, L. Duan, Y. Qiu, Mechanisms of charge transport in transition metal oxide doped organic semiconductors. J. Phys. Chem. C 118, 29636–29642 (2014)

    Article  Google Scholar 

  7. A. Tataroglu, F.Z. Pur, The Richardson constant and barrier inhomogeneity at Au/Si3N4/n-Si (MIS) Schottky diodes Phys. Scr. 88, 015801 (2013)

    Google Scholar 

  8. C. Bilkan, Y. Badali, S.F. Shablou, Y.A. Kalandaragh, S. Altındal, On the temperature dependent current transport mechanisms and barrier inhomogeneity in Au/SnO2-PVA/n-Si Schottky barrier diodes. Appl. Phys. A 123, 560 (2017)

    Article  Google Scholar 

  9. F. Cattaruzza, D. Fiorani, A. Flamini, P. Imperatori, G. Scavia, L. Suber, A.M. Testa, Magnetite nanoparticles anchored to crystalline silicon surfaces. Chem. Mater. 17, 3311–3316 (2005)

    Article  Google Scholar 

  10. S. Galvez, R. Zuazo, S. Colera et al., Sharp chemical interface in epitaxial Fe3O4 thin films. Appl. Phys. Lett. 105, 241603 (2014)

    Article  Google Scholar 

  11. A.R. Deniz, Z. Caldıran, O. Metin, K. Meral, S. Aydogan, The investigation of the electrical properties of Fe3O4/n-Si heterojunctions in a wide temperature range. J. Colloid Interface Sci. 473, 172–181 (2016)

    Article  Google Scholar 

  12. S. Ghosh, P.C. Srıvastava, Interface states of Fe3O4/Si interfacial structure and effect of magnetic field. J. Electron. Mater. 43, 11 (2014)

    Article  Google Scholar 

  13. K. Yang, D.H. Kim, J. Dho, Schottky barrier effect on the electrical properties Fe3O4/ZnO and Fe3O4/Nb: SrTiO3 heterostructures. J. Phys. D Appl. Phys. 44, 355301–355306 (2011)

    Article  Google Scholar 

  14. L.B. Zhao, W.B. Mi, E.Y. Jiang, H.L. Bai, Spin-polarized transport of electrons from polycrystalline Fe3O4 to amorphous Si. Appl. Phys. Lett. 91, 052113 (2007)

    Article  Google Scholar 

  15. P.L. Lang, Y.G. Zhao, C.M. Xiong, J. Li, D.N. Zheng, The rectifying property and magnetoresistance of La0.67Ca0.33MnO3/SiO2/Si heterojunction. J. Appl. Phys. 100, 053909 (2006)

    Article  Google Scholar 

  16. T.L. Qu, Y.G. Zhao, H.F. Tian, C.M. Xiong, S.M. Guo, J.Q. Li, Rectifying property and giant positive magnetoresistance of Fe3O4/SiO2/Si heterojunction. Appl. Phys. Lett. 90, 223514 (2007)

    Article  Google Scholar 

  17. V.A. Vikulov, A.A. Dimitriev, V.V. Balashev, T.A. Pisarenko, A.M. Maslov, V.V. Korobtsov, Electrical transport features in Fe3O4/SiO2/n-Si hybrid structure. Solid State Phenomena. 213, 56–59 (2014)

    Article  Google Scholar 

  18. V.A. Vikulov, A.A. Dimitriev, V.V. Balashev, T.A. Pisarenko, V.V. Korobtsov, Low -temperature conducting channel switching in hybrid Fe3O4/SiO2/n-Si structures. Mater. Sci. Eng. B 211, 33 (2016)

    Article  Google Scholar 

  19. H. Qin, C.M. Wang, Q.Q. Dong, L. Zhang, X. Zhang, Z.Y. Ma, Q.R. Han, Preparation and characterization of magnetic Fe3O4–chitosan nanoparticles loaded with isoniazid. J. Magn. Magn. Mater. 381, 120–126 (2015)

    Article  Google Scholar 

  20. S.H. Chaki, T.J. Malek, M.D. Chaudhary, J.P. Tailor, M.P. Deshpande, Magnetite Fe3O4 nanoparticles synthesis by wet chemical reduction and their characterization. Adv. Nat. Sci. 6, 035009 (2015)

    Google Scholar 

  21. E.H. Rhoderick, R.H. Williams, Metal-semiconductor contacts, 2nd edn. (Clarendon Press, Oxford, 1988)

    Google Scholar 

  22. M.A. Yeganeh, S.H. Rahmatollahpur, Barrier height and ideality factor dependency on identically produced small Au/p-Si Schottky barrier diodes. J. Semicond. 31, 074001 (2010)

    Article  Google Scholar 

  23. S. Mahato, D. Biswas, L.G. Gerling, C. Voz, J. Puigdollers, Analysis of temperature dependent current-voltage and capacitance-voltage characteristics of an Au/V2O5/n-Si Schottky diode. AIP Adv. 7, 085313 (2017)

    Article  Google Scholar 

  24. U. Parihar, J. Ray, C.J. Panchal, N. Padha, Influence of temperature on Al/p-CuInAlSe2 thin-film Schottky diodes. Appl. Phys. A 122, 568 (2016)

    Article  Google Scholar 

  25. S.K. Cheung, N.W. Cheung, Extraction of schottky diode parameters from forward current–voltage characteristics. Appl. Phys. Lett. 49, 85–87 (1986)

    Article  Google Scholar 

  26. H. Norde, A modified forward I–V plot for Schottky diodes with high series resistance. J. Appl. Phys. 50, 5052–5053 (1979)

    Article  Google Scholar 

  27. R.T. Tung, Electron transport at metal-semiconductor interfaces: general theory. Phys. Rev. B 45, 13509 (1992)

    Article  Google Scholar 

  28. C.A. Dimitriadis, S. Logothetidis, I. Alexandrou, Schottky barrier contacts of titanium nitride on n-type silicon. Appl. Phys. Lett. 66, 502 (1995)

    Article  Google Scholar 

  29. O. Demircioglu, S. Karatas, N. Yıldırım, O.F. Bakkaloglu, A. Turut, Temperature dependent current–voltage and capacitance–voltage characteristics of chromium Schottky contacts formed by electrodeposition technique on n-type Si. J. Alloys Compd. 509, 6433–6439 (2011)

    Article  Google Scholar 

  30. R. Kumar, S. Chand, Fabrication and electrical characterization of nickel/p-Si Schottky diode at low temperature. Solid-State Sci. 58, 115–121 (2016)

    Article  Google Scholar 

  31. K. Moraki, S. Bengi, S. Zeyrek, M.M. Bulbul, S. Altındal, Temperature dependence of characteristic parameters of the Au/C20H12/n-Si Schottky barrier diodes (SBDs) in the wide temperature range. J. Mater. Sci. 28, 3987–3996 (2017)

    Google Scholar 

  32. V.R. Reddy, N.N.K. Reddy, Current transport mechanisms in Ru/Pd/n-GaN Schottky barrier diodes and deep level defect studies. Superlattices Microstruct. 52, 484–499 (2012)

    Article  Google Scholar 

  33. A. Bobby, S. Verma, K. Asokan, P.M. Sarun, B.K. Antony, Phase transition induced double-Gaussian barrier height distribution in Schottky diode. Phys. B 431, 6–10 (2013)

    Article  Google Scholar 

  34. C. Bilkan, Y. Badali, S.F. Shablou, Y.A. Kalandaragh, S. Altındal, On the temperature dependent current transport mechanisms and barrier inhomogeneity in Au/SnO2-PVA/n-Si Schottky barrier diodes. Appl. Phys. A 123, 560 (2017)

    Article  Google Scholar 

  35. A. B. Ulusan, A. Tataroglu, Y. A. Kalandaragh, S. Altındal, On the conduction mechanisms of Au/(Cu2O–CuO–PVA)/n-Si (MPS) Schottky barrier diodes (SBDs) using current-voltage-temperature (I-V-T) characteristics, J Mater Sci:Mater Electron, https://doi.org/10.1007/s10854-017-7900-8

  36. S. Dogan, S. Duman, B. Gurbulak, S. Tuzemen, H. Morkoc, Temperature variation of current–voltage characteristics of Au/Ni/n-GaN Schottky diodes. Physica E 41, 646–651 (2009)

    Article  Google Scholar 

  37. A. Akkaya, E. Ayyıldiz, Effects of post annealing on I-V-T characteristics of (Ni/Au)/Al0.09Ga0.91N Schottky barrier diodes. J. Phys. (2016). https://doi.org/10.1088/1742-6596/707/1/012015

    Google Scholar 

  38. N.N.K. Reddy, V.R. Reddy, Barrier characteristics of Pt/Ru Schottky contacts on n-type GaN based on I-V-T and C-V-T measurements. Bull. Mater. Sci. 35, 53–61 (2012)

    Article  Google Scholar 

  39. S.D. Ganichev, E. Ziemann, W. Prettl, I.N. Yassievich, A.A. Istratov, E.R. Weber, Distinction between the Poole-Frenkel and tunneling models of electric-field-stimulated carrier emission from deep levels in semiconductors. Phys. Rev. B 61, 10361 (2000)

    Article  Google Scholar 

  40. G. Chakraborty, S. Chattopadhyay, C.K. Sarkar, C.J. Pramanik, Tunneling current at the interface of silicon and silicon dioxide partly embedded with silicon nanocrystals in metal oxide semiconductor structures. J. Appl. Phys. 101, 024315 (2007)

    Article  Google Scholar 

  41. L. Tsybeskov, G.F. Grom, P.M. Fauchet, J.P.M. Caffrey, J.-M. Baribeau, G.I. Sproule, D.J. Lockwood, Phonon-assisted tunneling and interface quality in nanocrystalline Si/amorphous SiO2 superlattices. Appl. Phys. Lett. 75, 2265 (1999)

    Article  Google Scholar 

  42. J. Panda, S. Chattopadhyay, T.K. Nath, Temperature dependent spin injection properties of the Ni nanodots embedded metallic TiN matrix and p-Si heterojunction. Thin Solid Films 546, 211–218 (2013)

    Article  Google Scholar 

  43. J. Panda, T.K. Nath, Spin transport and temperature-dependent giant positive junction magnetoresistance in CoFeO/SiO/p-Si heterostructure. Appl. Phys. A 122, 1–10 (2016). https://doi.org/10.1007/s00339-015-9521-5

    Google Scholar 

  44. J. Panda, S.N. Saha, T.K. Nath, Room temperature giant positive junction magnetoresistance of NiFe2O4/n-Si heterojunction for spintronics application. Physica B 488, 184–187 (2014)

    Article  Google Scholar 

  45. A. Ilie, B. Equer, Field-enhanced generation in hydrogenated amorphous silicon. Phys. Rev. B 57, 15349 (1998)

    Article  Google Scholar 

Download references

Acknowledgements

Dr. Nallabala Nanda Kumar Reddy thankfully acknowledges the financial support from the Department of Science and Technology (DST), Science and Engineering Research Board, Government of India, project No. ECR/2017/002868, the Management of Madanapalle Institute of Technology and Science (MITS, Madanapalle, A.P, India) and V.R. Technologies, Bangalore for their extended technical support. Dr. S. V. Prabhakar Vattikuti thankfully acknowledges the funding from the National Research Foundation of Korea (NRF) and Funded by the Ministry of Science, ICT, and Future Planning (2017R1A2B1004860). Dr. Kesarla Mohan Kumar greatly acknowledge the financial support from the University Grants Commission (UGC), Government of India, MRP project No. 6396/16 (SERO/UGC).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Nallabala Nanda Kumar Reddy or S. V. Prabhakar Vattikuti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nanda Kumar Reddy, N., Godavarthi, S., Mohan Kumar, K. et al. Evaluation of temperature dependent electrical transport parameters in Fe3O4/SiO2/n-Si metal–insulator-semiconductor (MIS) type Schottky barrier heterojunction in a wide temperature range. J Mater Sci: Mater Electron 30, 8955–8966 (2019). https://doi.org/10.1007/s10854-019-01223-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01223-1

Navigation