Skip to main content
Log in

Comparing the piezo, pyro and dielectric properties of PZT particles synthesized by sol–gel and electrospinning methods

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Two different kinds of Lead Zirconate Titanate (Pb (Zr0.52, Ti0.48) O3, PZT) particles (PZT-Ps) were synthesized from a precursor solution composed of Zirconium n-propoxide, Titanium isopropoxide and Lead 2-ethylhexanoate and polyvinyl pyrolidone polymer based on a sol–gel method. Prepared sol was either dried called PZT dried particles (PZT-D-Ps) after calcination and ball milling, or it was electrospun into nanofibers and it was named PZT nanofibers particles (PZT-Nf-Ps) again after calcination and ball milling. Perovskite phase formation in two kinds of PZT-Ps was investigated after calcination at various temperatures (550, 650 and 750 °C for 2 h) and finally they were ball milled to particles. Crystallography of PZT-Ps was investigated by Fourier Transform Inferred spectroscopy (FTIR) beside X-ray diffraction (XRD) technique, and their morphology was observed using the scanning electron microscope (SEM). Size distribution of synthesized PZT-Ps was determined by Dynamic light scattering (DLS) technique. Piezoelectric coefficient (d33) and dielectric constant (K) of PZT-Ps were measured and their other piezoelectric constants, such as piezoelectric voltage coefficient (g33) and figure of merit (FOM) were calculated. Finally, the pyroelectric properties of PZT-Ps were determined by changing their temperature suddenly from 0 to 100 °C. Results showed that the diameter of PZT-Ps through two methods i.e. PZT-D-Ps and PZT-Nf-Ps were about 532 nm and 230 nm respectively. After calcination at 550 °C, both crystalline phase i.e. perovskite and pyrochlore were present in all synthesized PZT-Ps simultaneously. With increasing the temperature to 650 °C then 750 °C, the pyrochlore phase was eliminated and the perovskite crystal phase was intensified gradually. Interestingly for PZT-Nf-Ps, the intensity of the perovskite phase was higher than PZT-D-Ps. Dielectric constants for PZT-Nf-Ps and PZT-D-Ps were about 2487 and 2011 respectively. Obtained piezoelectric coefficient and piezoelectric voltage coefficients of PZT-Nf-Ps (104 × 10−12 C/N, 0.4725 × 10−3 Vm/N) were achieved almost twice as much as PZT-D-Ps (48 × 10−12 C/N, 0.2699 × 10−3 Vm/N) and the pyroelectric coefficient of PZT-Nf-Ps (4.3 C m−2 k−1) was also higher than PZT-D-Ps (3.7 C m−2 k−1).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. X. Niu, J. Yu, S. Wang, Experimental study on low-temperature waste heat thermoelectric generator. J. Power Sources 188(2), 621–626 (2009)

    Article  CAS  Google Scholar 

  2. L. Liang, X. Kang, Y. Sang, H. Liu, One dimensional ferroelectric nanostructures: synthesis, properties, and applications. Adv. Sci. 3(7), 1500358 (2016)

    Article  CAS  Google Scholar 

  3. S. Ahmad, C. George, D.J. Beesley, J.J. Baumberg, M. De Volder, Photo-rechargeable organo-halide perovskite batteries. Nano Lett. 18(3), 1856–1862 (2018)

    Article  CAS  Google Scholar 

  4. Y. Zi et al., Triboelectric–pyroelectric–piezoelectric hybrid cell for high efficiency energy harvesting and self powered sensing. Adv. Mater. 27(14), 2340–2347 (2015)

    Article  CAS  Google Scholar 

  5. D. Bhatia, System design of frequency controlled triboelectric nanogenerators for environmental energy scavenging. Materials (2018). https://doi.org/10.13140/RG.2.2.19837.26082

    Article  Google Scholar 

  6. L. Jin et al., Self-powered safety helmet based on hybridized nanogenerator for emergency. ACS Nano 10(8), 7874–7881 (2016)

    Article  CAS  Google Scholar 

  7. W. Yang et al., Harvesting energy from the natural vibration of human walking. ACS Nano 7(12), 11317–11324 (2013)

    Article  CAS  Google Scholar 

  8. M. Abbasipour, R. Khajavi, A.A. Yousefi, M.E. Yazdanshenas, F. Razaghian, The piezoelectric response of electrospun PVDF nanofibers with graphene oxide, graphene, and halloysite nanofillers: a comparative study. J. Mater. Sci. 28(21), 15942–15952 (2017)

    CAS  Google Scholar 

  9. X. Chen, S. Xu, N. Yao, Y. Shi, 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Lett. 10(6), 2133–2137 (2010)

    Article  CAS  Google Scholar 

  10. R. Moalla, B. Vilquin, G. Saint-Girons, G. Sebald, N. Baboux, R. Bachelet, Dramatic effect of thermal expansion mismatch on the structural, dielectric, ferroelectric and pyroelectric properties of low-cost epitaxial PZT films on SrTiO 3 and Si. CrystEngComm 18(11), 1887–1891 (2016)

    Article  CAS  Google Scholar 

  11. A. Cuadras, M. Gasulla, A. Ghisla, and V. Ferrari, “Energy harvesting from PZT pyroelectric cells,” in Instrumentation and Measurement Technology Conference, 2006. IMTC 2006. Proceedings of the IEEE, 2006, pp. 1668-1672: IEEE

  12. P.M. Rørvik, T. Grande, M.A. Einarsrud, One dimensional nanostructures of ferroelectric perovskites. Adv. Mater. 23(35), 4007–4034 (2011)

    Article  CAS  Google Scholar 

  13. R. Moalla, G. Le Rhun, E. Defay, N. Baboux, G. Sebald, R. Bachelet, Pyroelectricity of Pb (Zr0. 52Ti0. 48) O3 films grown by sol–gel process on silicon. Thin Solid Films 601, 80–83 (2016)

    Article  CAS  Google Scholar 

  14. Y. Wang, J.J. Santiago-Avilés, A review on synthesis and characterization of lead zirconate titanate nanofibers through electrospinning. Integr. Ferroelectr. 126(1), 60–76 (2011)

    Article  CAS  Google Scholar 

  15. Y.J. Ko et al., Flexible Pb (Zr0. 52Ti0. 48) O3 films for a hybrid piezoelectric-pyroelectric nanogenerator under harsh environments. ACS Appl. Mater. Interfaces. 8(10), 6504–6511 (2016)

    Article  CAS  Google Scholar 

  16. Y.-I. Park, M. Nagai, M. Miyayama, T. Kudo, Effect of heating temperature on dielectric properties of Pb (Zr, Ti) O3 [PZT] fibers. J. Mater. Sci. 36(8), 1995–2000 (2001)

    Article  CAS  Google Scholar 

  17. S. Choi, J. Park, J. Kang, S.W. Koh, Y.C. Kang, Synthesis and characterization of lead zirconate titanate nanofibers obtained by electrospinning. Bull. Korean Chem. Soc. 36(6), 1594–1598 (2015)

    Article  CAS  Google Scholar 

  18. D.Y. Lee, J.-Y. Park, K.-H. Lee, J.-H. Kang, Y.-J. Oh, N.-I. Cho, Synthesis and characterization of Pb (Zr0. 5Ti0. 5) O3 nanofibers. Curr. Appl. Phys. 11(5), 1139–1143 (2011)

    Article  Google Scholar 

  19. J.S. Yun et al., The effect of PVP contents on the fiber morphology and piezoelectric characteristics of PZT nanofibers prepared by electrospinning. Mater. Lett. 137, 178–181 (2014)

    Article  CAS  Google Scholar 

  20. Q. Peng, W. Luo, C. Wu, X. Sun, P. Li, X. Chen, The fabrication and pyroelectric properties of single crystalline PZT nanorod synthesized by hydrothermal reaction. J. Mater. Sci. 25(4), 1627–1632 (2014)

    CAS  Google Scholar 

  21. R. Khajavi, M. Abbasipour, Electrospinning as a versatile method for fabricating coreshell, hollow and porous nanofibers. Sci. Iran. 19(6), 2029–2034 (2012)

    Article  Google Scholar 

  22. R. Khajavi, M. Abbasipour, A. Bahador, Electrospun biodegradable nanofibers scaffolds for bone tissue engineering. J. Appl. Polym. Sci. (2016). https://doi.org/10.1002/app.42883

    Article  Google Scholar 

  23. H. Rajabinejad, R. Khajavi, A. Rashidi, N. Mansouri, M. Yazdanshenas, Recycling of used bottle grade poly ethyleneterephthalate to nanofibers by melt-electrospinning method. Int. J. Environ. Res 3(4), 663–670 (2009)

    CAS  Google Scholar 

  24. V. Elayappan, V. Murugadoss, S. Angaiah, Z. Fei, P.J. Dyson, Development of a conjugated polyaniline incorporated electrospun poly (vinylidene fluoride co-hexafluoropropylene) composite membrane electrolyte for high performance dye-sensitized solar cells. J. Appl. Polym. Sci. (2015). https://doi.org/10.1002/app.42777

    Article  Google Scholar 

  25. P. Panneerselvam, V. Murugadoss, V. Elayappan, N. Lu, Z. Guo, S. Angaiah, ES energy & environment. Analysis 2, 2 (2018)

    Google Scholar 

  26. A.S. Priya, A. Subramania, Y.-S. Jung, K.-J. Kim, High-performance quasi-solid-state dye-sensitized solar cell based on an electrospun PVdF-HFP membrane electrolyte. Langmuir 24(17), 9816–9819 (2008)

    Article  CAS  Google Scholar 

  27. N. Singh, V. Murugadoss, S. Nemala, S. Mallick, S. Angaiah, Cu2ZnSnSe4 QDs sensitized electrospun porous TiO2 nanofibers as photoanode for high performance QDSC. Sol. Energy 171, 571–579 (2018)

    Article  CAS  Google Scholar 

  28. A.K. Solarajan, V. Murugadoss, S. Angaiah, Montmorillonite embedded electrospun PVdF–HFP nanocomposite membrane electrolyte for Li-ion capacitors. Appl. Mater. Today 5, 33–40 (2016)

    Article  Google Scholar 

  29. A.K. Solarajan, V. Murugadoss, S. Angaiah, Dimensional stability and electrochemical behaviour of ZrO 2 incorporated electrospun PVdF-HFP based nanocomposite polymer membrane electrolyte for Li-ion capacitors. Sci. Rep. 7, 45390 (2017)

    Article  CAS  Google Scholar 

  30. E. Vijayakumar, A. Subramania, Z. Fei, P.J. Dyson, High-performance dye-sensitized solar cell based on an electrospun poly (vinylidene fluoride-co-hexafluoropropylene)/cobalt sulfide nanocomposite membrane electrolyte. Rsc Adv. 5(64), 52026–52032 (2015)

    Article  CAS  Google Scholar 

  31. A.K. Solarajan, V. Murugadoss, S. Angaiah, High performance electrospun PVdF-HFP/SiO2 nanocomposite membrane electrolyte for Li-ion capacitors. J. Appl. Polym. Sci. 134(32), 45177 (2017)

    Article  CAS  Google Scholar 

  32. Y. Wang, R. Furlan, I. Ramos, J.J. Santiago-Aviles, Synthesis and characterization of micro/nanoscopic Pb (Zr0. 52Ti0. 48) O3 fibers by electrospinning. Appl. Phys. A 78(7), 1043–1047 (2004)

    Article  CAS  Google Scholar 

  33. M. Khajelakzay, E. Taheri-Nassaj, Synthesis and characterization of PB (ZR0. 52, TI0. 48) O3 nanofibers by electrospinning, and dielectric properties of PZT-Resin composite. Mater. Lett. 75, 61–64 (2012)

    Article  CAS  Google Scholar 

  34. J. Wang et al., Fabrication and characterization of size-controlled single-crystal-like PZT nanofibers by sol–gel based electrospinning. J. Alloy. Compd. 579, 617–621 (2013)

    Article  CAS  Google Scholar 

  35. X. Chen, S. Guo, and Y. Shi, “Acoustic emission transducer based on PZT nanofibers,” in Micro Electro Mechanical Systems (MEMS), 2012 IEEE 25th International Conference on, 2012, pp. 1301–1304: IEEE

  36. C. Rayssi, S.E. Kossi, J. Dhahri, K. Khirouni, Frequency and temperature-dependence of dielectric permittivity and electric modulus studies of the solid solution Ca 0.85 Er 0.1 Ti 1–x Co 4x/3 O 3 (0 ≤ x ≤ 0.1). RSC Advances 8(31), 17139–17150 (2018)

    Article  CAS  Google Scholar 

  37. R. Pramanik, M. Sahukar, Y. Mohan, B. Praveenkumar, S. Sangawar, A. Arockiarajan, Effect of grain size on piezoelectric, ferroelectric and dielectric properties of PMN-PT ceramics. Ceram. Int. 45(5), 5731–5742 (2019)

    Article  CAS  Google Scholar 

  38. T. Karaki, K. Yan, T. Miyamoto, M. Adachi, Lead-free piezoelectric ceramics with large dielectric and piezoelectric constants manufactured from BaTiO3 nano-powder. Jpn. J. Appl. Phys. 46(2L), L97 (2007)

    Article  CAS  Google Scholar 

  39. T. Hoshina, S. Hatta, H. Takeda, T. Tsurumi, Grain size effect on piezoelectric properties of BaTiO3 ceramics. Jpn. J. Appl. Phys. 57(9), 90 (2018)

    Article  Google Scholar 

  40. P. Zheng, J. Zhang, Y. Tan, C. Wang, Grain-size effects on dielectric and piezoelectric properties of poled BaTiO3 ceramics. Acta Mater. 60(13–14), 5022–5030 (2012)

    Article  CAS  Google Scholar 

  41. T.M. Kamel, G. de With, Grain size effect on the poling of soft Pb (Zr, Ti) O3 ferroelectric ceramics. J. Eur. Ceram. Soc. 28(4), 851–861 (2008)

    Article  CAS  Google Scholar 

  42. Y. Wang, J.J. Santiago-Avilés, Synthesis of lead zirconate titanate nanofibres and the Fourier-transform infrared characterization of their metallo-organic decomposition process. Nanotechnology 15(1), 32 (2003)

    Article  CAS  Google Scholar 

  43. S. Xu, Y. Shi, S.-G. Kim, Fabrication and mechanical property of nano piezoelectric fibres. Nanotechnology 17(17), 4497 (2006)

    Article  CAS  Google Scholar 

  44. E. Mensur Alkoy, C. Dagdeviren, M. Papila, Processing conditions and aging effect on the morphology of PZT electrospun nanofibers, and dielectric properties of the resulting 3–3 PZT/polymer composite. J. Am. Ceram. Soc. 92(11), 2566–2570 (2009)

    Article  CAS  Google Scholar 

  45. M. Khajelakzay, E. Taheri-Nassaj, Fabrication and dielectric properties of Pb (Zr 0.52 Ti 0.48) O 3 nanofibers-cement composites. Electron. Mater. Lett. 10(1), 117–120 (2014)

    Article  CAS  Google Scholar 

  46. A. Mirzaei, M. Bonyani, S. Torkian, Synthesis and characterization of nanocrystalline PZT powders: from sol to dense ceramics. Process. Appl. Ceram. 10(1), 9–16 (2016)

    Article  CAS  Google Scholar 

  47. J. Chang et al., Large d 33 and enhanced ferroelectric/dielectric properties of poly (vinylidene fluoride)-based composites filled with Pb (Zr 0.52 Ti 0.48) O 3 nanofibers. RSC Adv. 5(63), 51302–51307 (2015)

    Article  CAS  Google Scholar 

  48. G.H. Haertling, Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82(4), 797–818 (1999)

    Article  CAS  Google Scholar 

  49. T. Jordan, Z. Ounaies, Piezoelectric ceramics characterization (Institute For Computer Applications In Science And Engineering, Hampton, 2001)

    Google Scholar 

  50. M. Said, T. Velayutham, W.A. Majid, Dielectric, pyroelectric, and ferroelectric properties of gadolinium doped Sr0. 53Ba0. 47Nb2O6 ceramic. Ceram. Int. 43(13), 9783–9789 (2017)

    Article  CAS  Google Scholar 

  51. C. Dias, M. Simon, R. Quad, D. Das-Gupta, Measurement of the pyroelectric coefficient in composites using a temperature-modulated excitation. J. Phys. D 26(1), 106 (1993)

    Article  CAS  Google Scholar 

  52. S. Jachalke et al., How to measure the pyroelectric coefficient? Appl. Phys. Rev. 4(2), 021303 (2017)

    Article  CAS  Google Scholar 

  53. M. Adachi, T. Matsuzaki, T. Yamada, T. Shiosaki, A. Kawabata, Sputter-deposition of [111]-axis oriented rhombohedral PZT films and their dielectric, ferroelectric and pyroelectric properties. Jpn. J. Appl. Phys. 26(4R), 550 (1987)

    Article  CAS  Google Scholar 

  54. N. Dharmaraj, C. Kim, H. Kim, Pb (Zr0. 5, Ti0. 5) O3 nanofibres by electrospinning. Mater. Lett. 59(24–25), 3085–3089 (2005)

    Article  CAS  Google Scholar 

  55. I.S. Chronakis, Novel nanocomposites and nanoceramics based on polymer nanofibers using electrospinning process—a review. J. Mater. Process. Technol. 167(2–3), 283–293 (2005)

    Article  CAS  Google Scholar 

  56. T. Mandal, S. Ram, Synthesis of PbZr0. 7Ti0. 3O3 nanoparticles in a new tetragonal crystal structure with a polymer precursor. Mater. Lett. 57(16–17), 2432–2442 (2003)

    Article  CAS  Google Scholar 

  57. R. Ramaseshan, S. Sundarrajan, R. Jose, S. Ramakrishna, Nanostructured ceramics by electrospinning. J. Appl. Phys. 102(11), 7 (2007)

    Article  CAS  Google Scholar 

  58. Z. Zheng, L. Gan, T. Zhai, Electrospun nanowire arrays for electronics and optoelectronics. Sci. China Mater. 59(3), 200–216 (2016)

    Article  CAS  Google Scholar 

  59. S. Sharma, Ferroelectric nanofibers: principle, processing and applications. Adv. Mater. Lett 4, 522–533 (2013)

    Article  CAS  Google Scholar 

  60. A. Chandran, K. George, Defect induced modifications in the optical, dielectric, and transport properties of hydrothermally prepared ZnS nanoparticles and nanorods. J. Nanopart. Res. 16(3), 2238 (2014)

    Article  CAS  Google Scholar 

  61. U. Selvaraj, A. Prasadarao, S. Komarneni, K. Brooks, S. Kurtz, Sol-gel processing of PbTiO 3 and Pb (Zr 0.52 Ti 0.48) O 3 fibers. J. Mater. Res. 7(4), 992–996 (1992)

    Article  CAS  Google Scholar 

  62. Y.I. Park, M. Miyayama, Electrical properties of Pb (Zr0. 53Ti0. 47) O3 [PZT] fibers fabricated by sol-gel technique. Key Eng. Mater. 157, 33–40 (1999)

    Google Scholar 

  63. P. Nayak, T. Badapanda, A.K. Singh, S. Panigrahi, An approach for correlating the structural and electrical properties of Zr4+-modified SrBi 4 Ti 4 O 15/SBT ceramic. RSC Adv. 7(27), 16319–16331 (2017)

    Article  CAS  Google Scholar 

  64. P.R. Das, L. Biswal, B. Behera, R. Choudhary, Structural and electrical properties of Na2Pb2Eu2W2Ti4X4O30 (X = Nb, Ta) ferroelectric ceramics. Mater. Res. Bull. 44(6), 1214–1218 (2009)

    Article  CAS  Google Scholar 

  65. A. Wu, P.M. Vilarinho, I.M.M. Salvado, J.L. Baptista, Sol–gel preparation of lead zirconate titanate powders and ceramics: effect of alkoxide stabilizers and lead precursors. J. Am. Ceram. Soc. 83(6), 1379–1385 (2000)

    Article  CAS  Google Scholar 

  66. G.-T. Park, J.-J. Choi, J. Ryu, H. Fan, H.-E. Kim, Measurement of piezoelectric coefficients of lead zirconate titanate thin films by strain-monitoring pneumatic loading method. Appl. Phys. Lett. 80(24), 4606–4608 (2002)

    Article  CAS  Google Scholar 

  67. Z. Huang, Q. Zhang, S. Corkovic, R. Dorey, R.W. Whatmore, Comparative measurements of piezoelectric coefficient of PZT films by berlincourt, interferometer, and vibrometer methods. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 53(12), 2287–2293 (2006)

    Article  Google Scholar 

  68. H.D. Chen, K. Udayakumar, C.J. Gaskey, L.E. Cross, J.J. Bernstein, L.C. Niles, Fabrication and electrical properties of lead zirconate titanate thick films. J. Am. Ceram. Soc. 79(8), 2189–2192 (1996)

    Article  CAS  Google Scholar 

  69. A. Banerjee, S. Bose, Free-standing lead zirconate titanate nanoparticles: low-temperature synthesis and densification. Chem. Mater. 16(26), 5610–5615 (2004)

    Article  CAS  Google Scholar 

  70. J. Akedo, M. Lebedev, Piezoelectric properties and poling effect of Pb (Zr, Ti) O 3 thick films prepared for microactuators by aerosol deposition. Appl. Phys. Lett. 77(11), 1710–1712 (2000)

    Article  CAS  Google Scholar 

  71. M. Fan et al., Fabrication and piezoresponse of electrospun ultra-fine Pb (Zr0. 3, Ti0. 7) O3 nanofibers. Microelectron. Eng. 98, 371–373 (2012)

    Article  CAS  Google Scholar 

  72. I. Vrejoiu, G. Le Rhun, L. Pintilie, D. Hesse, M. Alexe, U. Gösele, Intrinsic ferroelectric properties of strained tetragonal PbZr0. 2Ti0. 8O3 obtained on layer–by–layer grown, defect–free single–crystalline films. Adv. Mater. 18(13), 1657–1661 (2006)

    Article  CAS  Google Scholar 

  73. R.W. Whatmore, R. Watton, Pyroelectric materials and devices, in Infrared detectors and emitters: materials and devices, ed. by P. Capper, C.T. Elliot (Springer, Berlin, 2001), pp. 99–147

    Chapter  Google Scholar 

  74. N. Shorrocks, A. Patel, M. Walker, A. Parsons, Integrated thin film PZT pyroelectric detector arrays. Microelectron. Eng. 29(1–4), 59–66 (1995)

    Article  CAS  Google Scholar 

  75. M. Algueró, M. Calzada, L. Pardo, Pyroelectric properties of sol-gel processed lanthanum modified lead titanate ferroelectric thin films. Le Journal de Physique IV 8, P9–155 (1998)

    Google Scholar 

  76. R. Köhler, P. Padmini, G. Gerlach, G. Hofmann, R. Bruchhaus, Pyroelectric IR-detector arrays based on sputtered PZT and spin-coated P (VDF/TrFE) thin films. Integr. Ferroelectr. 22(1–4), 383–392 (1998)

    Article  Google Scholar 

  77. Q. Zhang, R. Whatmore, Sol-gel PZT and Mn-doped PZT thin films for pyroelectric applications. J. Phys. D 34(15), 2296 (2001)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ramin Khajavi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chamankar, N., Khajavi, R., Yousefi, A.A. et al. Comparing the piezo, pyro and dielectric properties of PZT particles synthesized by sol–gel and electrospinning methods. J Mater Sci: Mater Electron 30, 8721–8735 (2019). https://doi.org/10.1007/s10854-019-01197-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01197-0

Navigation