Skip to main content

Advertisement

Log in

Preparation of hybrid photoelectrode based on defect-poor Zn-CuInSe2 QDs sensitized nanoporous ZnO nanosheets with an application in azo dye removal

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The glutathione (GSH) and mercaptopropionic acid (MPA) modified internal defect-rich, surface defects-poor near infrared (NIR) Zn–CuInSe2 (ZCISe) QDs were synthesized. Nanoporous ZnO nanosheets (NS) were firstly loaded with those ZCISe QDs to improve photoelectrochemical response in the NIR light region. Then loading Mn doping CdS thin film onto the ZCISe/ZnO NS was further used to reduce the interfacial recombination between different components of hybrid photoelectrode, in addition to enhance the light absorption and resist the photo-oxidation decomposition of the photocatalysts. Successively introducing ZCISe and Mn–CdS onto ZnO NS can increase the photocurrent intensities from 1 mA/cm2 for naked ZnO NS, 2.2 mA/cm2 for ZCISe/ZnO NS, to 9 mA/cm2 for Mn–CdS/ZCISe/ZnO NS. Here, excellent performance of ZCISe based ZnO NS photoelectrode is mainly attributed to an intrinsic defect state-related donor–acceptor pair (DAP) in ZCISe QDs with long-lived photogenerated carriers. Photocatalytic properties of Mn–CdS/ZCISe/ZnO NS were evaluated by removing azo dyes with an efficiency of 83%, an enhancement of 97% compared to that of ZnO NS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Scheme 1

Similar content being viewed by others

References

  1. A. Reife, A. Reife, H.S. Freeman, in Environmental Chemistry of Dyes and Pigments, vol. 807 (Wiley, New York, 1996), pp. 101–115

    Google Scholar 

  2. V.M. Daskalaki, E.S. Timotheatou, A. Katsaounis, D. Kalderis, Degradation of reactive red 120 using hydrogen peroxide in subcritical water. Desalination 274(1–3), 200–205 (2011)

    Article  Google Scholar 

  3. S.M. Lam, J.C. Sin, A.Z. Abdullah, A.R. Mohamed, Degradation of wastewaters containing organic dyes photocatalysed by zinc oxide: a review. Desalin. Water Treat. 41(1–3), 131–169 (2012)

    Article  Google Scholar 

  4. A.R. Khataee, M. Zarei, L. Moradkhannejhad, Application of response surface methodology for optimization of azo dye removal by oxalate catalyzed photoelectro-Fenton process using carbon nanotube-PTFE cathode. Desalination 258(1–3), 112–119 (2010)

    Article  Google Scholar 

  5. J.T. Carneiro, T.J. Savenije, J.A. Moulijn, G. Mul, How phase composition influences optoelectronic and photocatalytic properties of TiO2. J. Phys. Chem. C 115(5), 2211–2217 (2011)

    Article  Google Scholar 

  6. M. Yeber, J. Rodríguez, J. Freer, J. Baeza, N. Durán, H.D. Mansilla, Advanced oxidation of a pulp mill bleaching wastewater. Chemosphere 39(10), 1679–1688 (1999)

    Article  Google Scholar 

  7. M. Law, L.E. Greene, J.C. Johnson, R. Saykally, P. Yang, Nanowire dye-sensitized solar cells. Nat. Mater. 4(6), 455 (2005)

    Article  Google Scholar 

  8. G.K. Mor, K. Shankar, M. Paulose, O.K. Varghese, C.A. Grimes, Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 6(2), 215–218 (2006)

    Article  Google Scholar 

  9. W. Li, P. Sheng, H. Feng, X. Yin, X. Zhu, X. Yang, Q. Cai, Stable core/shell CdTe/Mn–CdS quantum dots sensitized three-dimensional, macroporous ZnO nanosheet photoelectrode and their photoelectrochemical properties. ACS Appl. Mater. Interfaces 6(15), 12353–12362 (2014)

    Article  Google Scholar 

  10. M. Mitra, A. Ghosh, A. Mondal, K. Kargupta, S. Ganguly, D. Banerjee, Facile synthesis of aluminium doped zinc oxide-polyaniline hybrids for photoluminescence and enhanced visible-light assisted photo-degradation of organic contaminants. Appl. Surf. Sci. 402, 418–428 (2017)

    Article  Google Scholar 

  11. H.R. Rajabi, M. Farsi, Study of capping agent effect on the structural, optical and photocatalytic properties of zinc sulfide quantum dots. Mater. Sci. Semicond. Process. 48, 14–22 (2016)

    Article  Google Scholar 

  12. H.R. Rajabi, F. Karimi, H. Kazemdehdashti, L. Kavoshi, Fast sonochemically-assisted synthesis of pure and doped zinc sulfide quantum dots and their applicability in organic dye removal from aqueous media. J. Photochem. Photobiol. 181, 98–105 (2018)

    Article  Google Scholar 

  13. H.R. Rajabi, O. Khani, M. Shamsipur, V. Vatanpour, High-performance pure and Fe3+-ion doped ZnS quantum dots as green nanophotocatalysts for the removal of malachite green under UV-light irradiation. J. Hazard. Mater. 250, 370–378 (2013)

    Article  Google Scholar 

  14. H.R. Rajabi, M. Farsi, Effect of transition metal ion doping on the photocatalytic activity of ZnS quantum dots: synthesis, characterization, and application for dye decolorization. J. Mol. Catal. A: Chem. 399, 53–61 (2015)

    Article  Google Scholar 

  15. C. Kulsi, A. Ghosh, A. Mondal, K. Kargupta, S. Ganguly, D. Banerjee, Enhanced photo catalytic performance of nickel doped bismuth selenide under visible light irradiation. Mater. Res. Express 4(3), 035902 (2017)

    Article  Google Scholar 

  16. C. Kulsi, A. Ghosh, A. Mondal, K. Kargupta, S. Ganguly, D. Banerjee, Remarkable photo-catalytic degradation of malachite green by nickel doped bismuth selenide under visible light irradiation. Appl. Surf. Sci. 392, 540–548 (2017)

    Article  Google Scholar 

  17. A. Ghosh, M. Mitra, D. Banerjee, A. Mondal, Facile electrochemical deposition of Cu4Te7 thin films with visible-light driven photocatalytic activity and thermoelectric performance. RSC Adv. 6(27), 22803–22811 (2016)

    Article  Google Scholar 

  18. A. Ghosh, C. Kulsi, D. Banerjee, A. Mondal, Galvanic synthesis of Cu2–xSe thin films and their photocatalytic and thermoelectric properties. Appl. Surf. Sci. 369, 525–534 (2016)

    Article  Google Scholar 

  19. R. Herberholz, M. Igalson, H.W. Schock, Distinction between bulk and interface states in CuInSe2/CdS/ZnO by space charge spectroscopy. J. Appl. Phys. 83(1), 318–325 (1998)

    Article  Google Scholar 

  20. F. Shen, W. Que, J. Zhang, X. Qiu, X. Yin, Y. Liao, Photovoltaic activity of ZnO nanorods arrays Co-sensitized by CdS and CuInS2 quantum dots. J. Nanosci. Nanotechnol. 13(2), 1168–1172 (2013)

    Article  Google Scholar 

  21. D.L. Young, J. Keane, A. Duda, J.A. AbuShama, C.L. Perkins, M. Romero, R. Noufi, Improved performance in ZnO/CdS/CuGaSe2 thi-film solar cells. Prog. Photovoltaics Res. Appl. 11(8), 535–541 (2003)

    Article  Google Scholar 

  22. M. Bagheri, A.R. Mahjoub, B. Mehri, Enhanced photocatalytic degradation of congo red by solvothermally synthesized CuInSe2–ZnO nanocomposites. RSC Adv. 4(42), 21757 (2014)

    Article  Google Scholar 

  23. F. Shen, W. Que, Y. He, Y. Yuan, X. Yin, G. Wang, Enhanced photocatalytic activity of zno microspheres via hybridization with CuInSe2 and CuInS2 nanocrystals. ACS Appl. Mater. Interfaces 4(8), 4087–4092 (2012)

    Article  Google Scholar 

  24. J. Du, Z. Du, J.S. Hu, Z. Pan, Q. Shen, J. Sun, L.J. Wan, Zn–Cu–In–Se quantum dot solar cells with a certified power conversion efficiency of 11.6%. J. Am. Chem. Soc. 138(12), 4201–4209 (2016)

    Article  Google Scholar 

  25. L. Zhang, Z. Pan, W. Wang, J. Du, Z. Ren, Q. Shen, X. Zhong, Copper deficient Zn–Cu–In–Se quantum dot sensitized solar cells for high efficiency. J. Mater. Chem. A 5(40), 21442–21451 (2017)

    Article  Google Scholar 

  26. X. Tong, Y. Zhou, L. Jin, K. Basu, R. Adhikari, G.S. Selopal, F. Rosei, Heavy metal-free, near-infrared colloidal quantum dots for efficient photoelectrochemical hydrogen generation. Nano Energy 31, 441–449 (2017)

    Article  Google Scholar 

  27. C. Zhao, Z. Bai, X. Liu, Y. Zhang, B. Zou, H. Zhong, Small GSH-capped CuInS2 quantum dots: MPA-assisted aqueous phase transfer and bioimaging applications. ACS Appl. Mater. Interfaces 7(32), 17623–17629 (2015)

    Article  Google Scholar 

  28. J. Qiu, M. Guo, X. Wang, Electrodeposition of hierarchical ZnO nanorod-nanosheet structures and their applications in dye-sensitized solar cells. ACS Appl. Mater. Interfaces 3(7), 2358–2367 (2011)

    Article  Google Scholar 

  29. P.K. Santra, P.V. Kamat, Mn-doped quantum dot sensitized solar cells: a strategy to boost efficiency over 5%. J. Am. Chem. Soc. 134(5), 2508–2511 (2012)

    Article  Google Scholar 

  30. W. Zhang, X. Zhong, Facile synthesis of ZnS–CuInS2 alloyed nanocrystals for a color-tunable fluorchrome and photocatalyst. Inorg. Chem. 50(9), 4065–4072 (2011)

    Article  Google Scholar 

  31. Z. Ding, B.M. Quinn, S.K. Haram, L.E. Pell, B.A. Korgel, A.J. Bard, Electrochemistry and electrogenerated chemiluminescence from silicon nanocrystal quantum dots. Science 296(5571), 1293–1297 (2002)

    Article  Google Scholar 

  32. Y. Yang, H. Zhong, Z. Bai, B. Zou, Y. Li, G.D. Scholes, Transition from photoconductivity to photovoltaic effect in P3HT/CuInSe2 composites. J. Phys. Chem. C 116(13), 7280–7286 (2012)

    Article  Google Scholar 

  33. Q. Sun, H. Wang, C. Yang, Y. Li, Synthesis and electroluminescence of novel copolymers containing crown ether spacers. J. Mater. Chem. 13(4), 800–806 (2003)

    Article  Google Scholar 

  34. S.K. Haram, A. Kshirsagar, Y.D. Gujarathi, P.P. Ingole, O.A. Nene, G.B. Markad, S.P. Nanavati, Quantum confinement in CdTe quantum dots: investigation through cyclic voltammetry supported by density functional theory (DFT). J. Phys. Chem. C 115(14), 6243–6249 (2011)

    Article  Google Scholar 

  35. H.Y. Ueng, H.L. Hwang, The defect structure of CuInS2 part III: extrinsic impurities. J. Phys. Chem. Solids 51(1), 11–18 (1990)

    Article  Google Scholar 

  36. W.W. Wang, Y.J. Zhu, L.X. Yang, ZnO–SnO2 hollow spheres and hierarchical nanosheets: hydrothermal preparation, formation mechanism, and photocatalytic properties. Adv. Func. Mater. 17(1), 59–64 (2007)

    Article  Google Scholar 

  37. H.R. Rajabi, M. Shamsipur, A.A. Khosravi, O. Khani, M.H. Yousefi, Selective spectrofluorimetric determination of sulfide ion using manganese doped ZnS quantum dots as luminescent probe. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 107, 256–262 (2013)

    Article  Google Scholar 

  38. H.R. Rajabi, F. Shahrezaei, M. Farsi, Zinc sulfide quantum dots as powerful and efficient nanophotocatalysts for the removal of industrial pollutant. J. Mater. Sci.: Mater. Electron. 27(9), 9297–9305 (2016)

    Google Scholar 

  39. Y.X. Yu, W.X. Ouyang, Z.T. Liao, B.B. Du, W.D. Zhang, Construction of ZnO/ZnS/CdS/CuInS2 core-shell nanowire arrays via ion exchange: p-n junction photoanode with enhanced photoelectrochemical activity under visible light. ACS Appl. Mater. Interfaces 6(11), 8467–8474 (2014)

    Article  Google Scholar 

  40. T. Xu, J. Hu, Y. Yang, W. Que, X. Yin, H. Wu, L. Chen, Ternary system of ZnO nanorods/reduced graphene oxide/CuInS2 quantum dots for enhanced photocatalytic performance. J. Alloy. Compd. 734, 196–203 (2018)

    Article  Google Scholar 

  41. I. Zarazúa, E. De la Rosa, T. López-Luke, J. Reyes-Gomez, S. Ruiz, C. Chavez, J. Z. Zhang, Photovoltaic conversion enhancement of CdSe quantum dot sensitized TiO2 decorated with Au nanoparticles and P3OT. J. Phys. Chem. C 115(46), 23209–23220 (2011)

    Article  Google Scholar 

  42. S. Khanchandani, S. Kundu, A. Patra, A.K. Ganguli, Shell thickness dependent photocatalytic properties of ZnO/CdS core-shell nanorods. J. Phys. Chem. C 116(44), 23653–23662 (2012)

    Article  Google Scholar 

  43. M.J. Chatterjee, S.T. Ahamed, M. Mitra, C. Kulsi, A. Mondal, D. Banerjee, Visible-light influenced photocatalytic activity of polyaniline-bismuth selenide composites for the degradation of methyl orange, rhodamine B and malachite green dyes. Appl. Surf. Sci. 470, 472–483 (2019)

    Article  Google Scholar 

  44. I. Mehmood, Y. Liu, K. Chen, A.H. Shah, W. Chen, Mn doped CdS passivated CuInSe2 quantum dot sensitized solar cells with remarkably enhanced photovoltaic efficiency. RSC Adv. 7(53), 33106–33112 (2017)

    Article  Google Scholar 

  45. S. Wang, B. Zhu, M. Liu, L. Zhang, J. Yu, M. Zhou, Direct Z-scheme ZnO/CdS hierarchical photocatalyst for enhanced photocatalytic H2-production activity. Appl. Catal. B 243, 19–26 (2019)

    Article  Google Scholar 

  46. D. Ma, J.W. Shi, Y. Zou, Z. Fan, X. Ji, C. Niu, L. Wang, Rational design of CdS@ZnO core-shell structure via atomic layer deposition for drastically enhanced photocatalytic H2 evolution with excellent photostability. Nano Energy 39, 183–191 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

The work was gratefully supported by the National Natural Science Foundation of China (Grant No. 21605090), Key Scientific Research Program of the Higher Education Institutions of Henan Province (17A150044, 18A150043), Scientific Research Foundation for High-level Talents of Pingdingshan University (PXY-BSQD2016008, PXY-BSQD2016007), Training Programme Foundation for the National Project of Pingdingshan University (PXY-PYJJ2016003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weili Li or Songtian Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 721 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, L., Geng, H., Cheng, R. et al. Preparation of hybrid photoelectrode based on defect-poor Zn-CuInSe2 QDs sensitized nanoporous ZnO nanosheets with an application in azo dye removal. J Mater Sci: Mater Electron 30, 7928–7939 (2019). https://doi.org/10.1007/s10854-019-01114-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01114-5

Navigation