Skip to main content
Log in

Environmentally benign synthesis of CuInS2/ZnO heteronanorods: visible light activated photocatalysis of organic pollutant/bacteria and study of its mechanism

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Due to its high light absorption coefficient and appropriate bandgap, CuInS2 (CIS) has been receiving much attention as an absorber material for thin film solar cells and also as a visible light photocatalyst. Herein we present heterostructured CIS/ZnO nanorods (NRs) in an attempt to enhance light absorption and facilitate charge separation/transfer in the photocatalysis system. CIS nanoparticles (NPs) were directly deposited on ZnO nanorod arrays (NRAs) to fabricate heterostructured CIS/ZnO NRAs using an environmentally benign, non-hydrazine solution reaction. These heterostructured NRAs are immobilized on FTO glass, which has additional merits of recyclability and bias-applicability. The ideal type-II band structure of CIS/ZnO enables efficient charge separation/transfer, which is confirmed by PL (photoluminescence) decay measurements. Also, the 1D-ZnO NR structure facilitates fast charge transfer along with enhancing light absorption via light scattering. These synergistic effects improved the photocatalytic activity in both organic dye and bacteria decomposition. The photodecomposition efficiency was further enhanced with an aid of external bias. The underlying photocatalytic mechanism was also investigated through controlled experiments under various scavenging conditions. The results suggest that reactive oxygen species (ROS) formed by multistep reduction of O2 play a main role in photocatalysis, while hole-induced photo-decomposition is relatively deactivated due to the band structure of the heterostructures of CIS/ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. G. Kumar and L. G. Devi, J. Phys. Chem. A, 2011, 115, 13211–13241.

    Article  CAS  PubMed  Google Scholar 

  2. R. Daghrir, P. Drogui and D. Robert, Ind. Eng. Chem. Res., 2013, 52, 130226090752004.

    Article  CAS  Google Scholar 

  3. V. R. Posa, V. Annavaram, J. R. Koduru, V. R. Ammireddy and A. R. Somala, Korean J. Chem. Eng., 2016, 33, 456–464.

    Article  CAS  Google Scholar 

  4. U. I. Gaya and A. H. Abdullah, J. Photochem. Photobiol., C, 2008, 9, 1–12.

    Article  CAS  Google Scholar 

  5. S. Sakthivel, B. Neppolian, M. V. Shankar, B. Arabindoo, M. Palanichamy and V. Murugesan, Sol. Energy Mater. Sol. Cells, 2003, 77, 65–82.

    Article  CAS  Google Scholar 

  6. Y. J. Jang, C. Simer and T. Ohm, Mater. Res. Bull., 2006, 41, 67–77.

    Article  CAS  Google Scholar 

  7. C. Tian, Q. Zhang, A. Wu, M. Jiang, Z. Liang, B. Jiang and H. Fu, Chem. Commun., 2012, 48, 2858.

    Article  CAS  Google Scholar 

  8. A. Kudo and Y. Miseki, Chem. Soc. Rev., 2009, 38, 253–278.

    Article  CAS  PubMed  Google Scholar 

  9. S. Rehman, R. Ullah, A. M. Butt and N. D. Gohar, J. Hazard. Mater., 2009, 170, 560–569.

    Article  CAS  PubMed  Google Scholar 

  10. E. Guillén, L. M. Peter and J. A. Anta, J. Phys. Chem. C, 2011, 115, 22622–22632.

    Article  CAS  Google Scholar 

  11. M. Pelaez, N. T. Nolan, S. C. Pillai, M. K. Seery, P. Falaras, A. G. Kontos, P. S. M. Dunlop, J. W. J. Hamilton, J. A. Byrne, K. O'Shea, M. H. Entezari and D. D. Dionysiou, Appl. Catal., B, 2012, 125, 331–349.

    Article  CAS  Google Scholar 

  12. Y. Wang, Q. Wang, X. Zhan, F. Wang, M. Safdar and J. He, Nanoscale, 2013, 5, 8326–8339.

    Article  CAS  PubMed  Google Scholar 

  13. Y. Tak, H. Kim, D. Lee and K. Yong, Chem. Commun., 2008, 4585–4587.

    Google Scholar 

  14. C. Eley, T. Li, F. Liao, S. M. Fairclough, J. M. Smith, G. Smith and S. C. E. Tsang, Angew. Chem., Int. Ed., 2014, 53, 7838–7842.

    Article  CAS  Google Scholar 

  15. Y. Wu, F. Xu, D. Guo, Z. Gao, D. Wu and K. Jiang, Appl. Surf. Sci., 2013, 274, 39–44.

    Article  CAS  Google Scholar 

  16. C. Liu, Z. Liu, Y. Li, Z. Liu, Y. Wang, E. Lei, J. Ya, N. Gargiulo and D. Caputo, Mater. Sci. Eng., B, 2012, 177, 570–574.

    Article  CAS  Google Scholar 

  17. D. Lin, H. Wu, R. Zhang, W. Zhang and W. Panw, J. Am. Ceram. Soc., 2010, 93, 3384–3389.

    Article  CAS  Google Scholar 

  18. M. G. Panthani, V. Akhavan, B. Goodfellow, J. P. Schmidtke, L. Dunn, A. Dodabalapur, P. F. Barbara and B. A. Korgel, J. Am. Chem. Soc., 2008, 130, 16770–16777.

    Article  CAS  PubMed  Google Scholar 

  19. M. Gloeckler and J. R. Sites, J. Phys. Chem. Solids, 2005, 66, 1891–1894.

    Article  CAS  Google Scholar 

  20. L. Y. Sun, L. L. Kazmerski, A. H. Clark, P. J. Ireland and D. W. Morton, J. Vac. Sci. Technol., 1978, 15, 265–268.

    Article  CAS  Google Scholar 

  21. P. Jackson, D. Hariskos, E. Lotter, S. Paetel, R. Wuerz, R. Menner, W. Wischmann and M. Powalla, Prog. Photovolt. Res. Appl., 2011, 19, 894–897.

    Article  CAS  Google Scholar 

  22. I. Repins, M. A. Contreras, B. Egaas, C. DeHart, J. Scharf, C. L. Perkins, B. To and R. Noufi, Prog. Photovolt. Res. Appl., 2008, 16, 235–239.

    Article  CAS  Google Scholar 

  23. F. Shen, W. Que, Y. He, Y. Yuan, X. Yin and G. Wang, ACS Appl. Mater. Interfaces, 2012, 4, 4087–4092.

    Article  CAS  PubMed  Google Scholar 

  24. H. Fakhri, A. R. Mahjoub and A. H. C. Khavar, Appl. Surf. Sci., 2014, 318, 65–73.

    Article  CAS  Google Scholar 

  25. Y. Yang, W. Que, X. Zhang, Y. Xing, X. Yin and Y. Du, J. Hazard. Mater., 2016, 317, 430–439.

    Article  CAS  PubMed  Google Scholar 

  26. H. Fakhri, A. R. Mahjoub and A. H. C. Khavar, Mater. Sci. Semicond. Process., 2016, 41, 38–44.

    Article  CAS  Google Scholar 

  27. G. S. Chen, J. C. Yang, Y. C. Chan, L. C. Yang and W. Huang, Sol. Energy Mater. Sol. Cells, 2009, 93, 1351–1355.

    Article  CAS  Google Scholar 

  28. D. Lee and K. Yong, ACS Appl. Mater. Interfaces, 2012, 4, 6758–6765.

    Article  CAS  PubMed  Google Scholar 

  29. D. Lee and K. Yong, J. Phys. Chem. C, 2014, 118, 7788–7800.

    Article  CAS  Google Scholar 

  30. T. K. Todorov, O. Gunawan, T. Gokmen and D. B. Mitzi, Prog. Photovolt. Res. Appl., 2013, 21, 82–87.

    Article  CAS  Google Scholar 

  31. Y. Tak and K. Yong, J. Phys. Chem. B, 2005, 109, 19263–19269.

    Article  CAS  PubMed  Google Scholar 

  32. L. Li, N. Coates and D. Moses, J. Am. Chem. Soc., 2009, 132, 22–23.

    Article  CAS  Google Scholar 

  33. S. Cho, J. W. Jang, K. H. Lee and J. S. Lee, APL Mater., 2014, 2(1), 010703.

    Article  CAS  Google Scholar 

  34. S. Kim, B. Fisher, H. J. Eisler and M. Bawendi, J. Am. Chem. Soc., 2003, 125, 11466–11467.

    Article  CAS  PubMed  Google Scholar 

  35. Y. Choi, M. Beak and K. Yong, Nanoscale, 2014, 6, 8914–8918.

    Article  CAS  PubMed  Google Scholar 

  36. H. Kaneko, T. Minegishi and K. Domen, Coatings, 2015, 5, 293–311.

    Article  CAS  Google Scholar 

  37. M. Sauer, J. Hofkens and J. Enderlein, Handb. Fluoresc. Spectrosc. Imaging From Single Mol, Ensembles, 2011, pp. 1–30.

    Book  Google Scholar 

  38. W.-S. Chae, E. Choi, Y. Ku Jung, J.-S. Jung and J.-K. Lee, Appl. Phys. Lett., 2014, 104, 153101.

    Article  CAS  Google Scholar 

  39. A. Sillen and Y. Engelborghs, Photochem. Photobiol., 1998, 67, 475–486.

    CAS  Google Scholar 

  40. M. R. Hoffmann, S. Martin, W. Choi and D. W. Bahnemann, Chem. Rev., 1995, 95, 69–96.

    Article  CAS  Google Scholar 

  41. L. Wu, J. C. Yu and X. Fu, J. Mol. Catal. A: Chem., 2006, 244, 25–32.

    Article  CAS  Google Scholar 

  42. E. Grabowska, J. Reszczynska and A. Zaleska, Water Res., 2012, 46, 5453–5471.

    Article  CAS  PubMed  Google Scholar 

  43. R. Jusoh, A. A. Jalil, S. Triwahyono and N. H. N. Kamarudin, RSCAdv., 2015, 5, 9727–9736.

    CAS  Google Scholar 

  44. J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo and D. W. Bahnemann, Chem. Rev., 2014, 114, 9919–9986.

    Article  CAS  PubMed  Google Scholar 

  45. K. Krumova and G. Cosa, Singlet Oxygen: Applications in Biosciences and Nanosciences, 2016, vol. 1, pp. 1–21.

    Article  Google Scholar 

  46. S. Ghosh, N. A. Kouamé, L. Ramos, S. Remita, A. Dazzi, A. Deniset-Besseau, P. Beaunier, F. Goubard, P.-H. Aubert and H. Remita, Nat. Mater., 2015, 14, 505–511.

    Article  CAS  PubMed  Google Scholar 

  47. G. V. Buxton, C. L. Greenstock, W. P. Helman and A. B. Ross, J. Phys. Chem. Ref. Data, 1988, 17, 513–886.

    Article  CAS  Google Scholar 

  48. D. J. Carlsson, J. Polym. Sci., Part C: Polym. Lett., 1978, 16, 485–486.

    Google Scholar 

  49. C. Hu, Y. Lan, J. Qu, X. Hu and A. Wang, J. Phys. Chem. B, 2006, 110, 4066–4072.

    Article  CAS  PubMed  Google Scholar 

  50. O. Akhavan and E. Ghaderi, J. Phys. Chem. C, 2009, 113, 20214–20220.

    Article  CAS  Google Scholar 

  51. C. M. Courtney, S. M. Goodman, J. A. McDaniel, N. E. Madinger, A. Chatterjee and P. Nagpal, Nat. Mater., 2016, 15, 529–534.

    Article  CAS  PubMed  Google Scholar 

  52. N. S. Leyland, J. Podporska-Carroll, J. Browne, S. J. Hinder, B. Quilty and S. C. Pillai, Sci. Rep., 2016, 6, 24770.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. X. Huang, I. H. El-Sayed, W. Qian and M. A. El-Sayed, J. Am. Chem. Soc., 2006, 128, 2115–2120.

    Article  CAS  PubMed  Google Scholar 

  54. C. Loo, A. Lowery, N. Halas, J. West and R. Drezek, Nano Lett., 2005, 5, 709–711.

    Article  CAS  PubMed  Google Scholar 

  55. Q.-C. Sun, Y. Ding, S. M. Goodman, H. H. Funke and P. Nagpal, Nanoscale, 2014, 6, 12450–12457.

    Article  CAS  PubMed  Google Scholar 

  56. V. Lakshmi Prasanna and R. Vijayaraghavan, Langmuir, 2015, 31, 9155–9162.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF-2016R1A4A1010735, NRF-2016R1A2B2011416). E.-J. K. and S. W. H. acknowledge the Korea Ministry of Environment as part of “The Eco-Innovation Program” (No. 2016000140006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wooyul Kim or Kijung Yong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baek, M., Kim, EJ., Hong, S.W. et al. Environmentally benign synthesis of CuInS2/ZnO heteronanorods: visible light activated photocatalysis of organic pollutant/bacteria and study of its mechanism. Photochem Photobiol Sci 16, 1792–1800 (2017). https://doi.org/10.1039/c7pp00248c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c7pp00248c

Navigation