Skip to main content

Advertisement

Log in

Fabrication of nanostructured magnesium ferrite polyhedrons and their applications in heat transfer management and gas/humidity sensors

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this paper we report the sol–gel synthesis of MgFe2O4 nanostructures of polyhedron morphology. X-ray diffraction (XRD) patterns revealed the presence of pure phase MgFe2O4 crystalline materials whereas Energy dispersive X-ray analysis (EDX) confirmed the presence of Mg, Fe and O in the compound. Scanning electron microscopy (SEM) image shows the porous scenery on the surface of the material whereas transmission electron microscopy (TEM) image displays polyhedron morphology of the particles. Sensor films fabricated utilizing these nanostructures were tested for gas/humidity sensing with notable success as the average sensitivity of the humidity sensor was found to be ~ 0.0237 MΩ/%RH over the entire range of humidity tested for and maximum % sensor response was found to be 27.19 corresponding to exposure of 4 vol% LPG. Minimum response and recovery times were found to be 79 and 60 s respectively for 0.5 vol% LPG. The magnesium ferrite nanoparticles were tested for heat transfer applications as ethylene glycol based nanofluid component. The result shows that the thermal conductivity of ethylene glycol nanofluid was significantly increased compared to pure ethylene glycol due to the presence of suspended MgFe2O4 nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Y. Li, Q. Li, M. Wen, Y. Jhang, Y. Jhai, Z. Xie, F. Xu, S. Wei, J. Electron. Spectrom. Relat. Phenom. 160, 1–6 (2007)

    CAS  Google Scholar 

  2. Z. Sun, L. Liu, D.Z. Jia, W. Pan, Sens. Actuators B 125, 144–148 (2007)

    CAS  Google Scholar 

  3. S. Singh, A. Singh, B.C. Yadav, P. Tandon, Mater Sci. Semicond. Process 23, 122–135 (2014)

    CAS  Google Scholar 

  4. A. Singh, A. Singh, S. Singh, P. Tandon, B.C. Yadav, J. Mater. Sci.: Mater. Electron. 27, 8047–8054 (2016)

    CAS  Google Scholar 

  5. M. Singh, B.C. Yadav, A. Ranjan, M. Kaur, S.K. Gupta, Sens. Actuators B 233, 1170–1178 (2017)

    Google Scholar 

  6. R.T. Kumar, N.C.S. Selvam, C. Ragupathi, L.J. Kennedy, J.J. Vijaya, Powder Technol. 224, 147–154 (2012)

    CAS  Google Scholar 

  7. Y.J. Chen, C.L. Zhu, L.J. Wang, P. Gao, M.S. Cao, X.L. Shi, Nanotechnology 20, 1–6 (2009)

    CAS  Google Scholar 

  8. B.C. Yadav, K.S. Chauhan, S. Singh, R.K. Sonker, S. Sikarwar, R. Kumar, J. Mater. Sci.: Mater. Electron. 28, 5270–5280 (2017)

    CAS  Google Scholar 

  9. J.Y. Patil, M.S. Khandekar, I.S. Mulla, S.S. Suryavanshi, Curr. Appl. Phys. 12, 319–324 (2012)

    Google Scholar 

  10. J. Shah, R.K. Kotnala, Sens. Actuators B 171–172, 832–837 (2012)

    Google Scholar 

  11. A.N. Ay, D. Konuk, B. Zümreoğlu-Karan, Mater. Sci. Eng. C 31, 851–857 (2011)

    CAS  Google Scholar 

  12. S. Singh, B.C. Yadav, M. Singh, R. Kothari, Int. J Sci. Technol. Soc. 1(1), 5–21 (2015)

    Google Scholar 

  13. T. Maehera, K. Konishi, T. Kamimori, H. Aono, T. Naohara, H. Kikkawa, Y. Watanabe, K. Kawachi, Jpn. J. Appl. Phys. 41, 1620 (2002)

    Google Scholar 

  14. Q. Chen, Z.J. Zhang, Appl. Phys. Lett. 73, 3156 (1998)

    CAS  Google Scholar 

  15. K.K. Dey, D. Bhatnagar, A.K. Srivastava, M. Wan, S. Singh, R.R. Yadav, B.C. Yadav, M. Deepa, Nanoscale 7, 6159–6172 (2015)

    CAS  Google Scholar 

  16. D.C. Bharti, K. Mukherjee, S.B. Majumder, Mater. Chem. Phys. 120, 509–517 (2010)

    CAS  Google Scholar 

  17. P.P. Hankare, S.D. Jadhav, U.B. Sankpal, R.P. Patil, R. Sasikala, I.S. Mulla, J. Alloy Compd. 488, 270–272 (2009)

    CAS  Google Scholar 

  18. K. Mukherjee, S.B. Majumder, ScriptaMaterialia 67, 617–620 (2012)

    CAS  Google Scholar 

  19. S. Darshane, I.S. Mulla, Mater. Chem. Phys. 119, 319–323 (2010)

    CAS  Google Scholar 

  20. J.Y. Patil, M.S. Khandekar, I.S. Mulla, S.S. Suryavanshi, Curr. Appl. Phys. 12, 319–324 (2012)

    Google Scholar 

  21. Y.L. Liu, Z.M. Liu, Y. Yang, H.F. Yang, G.L. Shen, R.Q. Yu, Sens. Actuators B 107, 600–604 (2005)

    CAS  Google Scholar 

  22. J. Shah, M. Arora, L.P. Purohit, R.K. Kotnala, Sens. Actuators A 167, 332–337 (2011)

    CAS  Google Scholar 

  23. R.K. Kotnala, J. Shah, B. Singh, H. Kishan, S. Singh, S.K. Dhawan, A. Sengupta, Sens. Actuators B 129, 909–914 (2008)

    CAS  Google Scholar 

  24. M.M. Rashidi, S. Abelman, N. FreidooniMehr, Int. J. Heat Mass Transf. 62, 515–525 (2013)

    CAS  Google Scholar 

  25. O.A. Bég, T.A. Bég, M.M. Rashidi, M. Asadi, Int. J. Appl. Math. Mech. 9, 80–107 (2013)

    Google Scholar 

  26. M.M. Rashidi, E. Erfani, Int. J. Numer. Methods Heat Fluid Flow 21, 864–883 (2011)

    CAS  Google Scholar 

  27. R. Taylor, S. Coulombe, T. Otanicar, P. Phelan, A. Gunawan, W. Lv, G. Rosengarten, R. Prasher, H. Tyagi, J. Appl. Phys. 113, 011301 (2013)

    Google Scholar 

  28. S.K. Das, S.U. Choi, W. Yu, T. Pradeep, Nanofluids: Science and Technology, 1st edn. (Wiley-Interscience, USA, 2007)

    Google Scholar 

  29. J. Gangwar, K.K. Dey, S.K. Tripathi, M. Wan, R.R. Yadav, R.K. Singh, Samta, A.K. Srivastava, Nanotechnology 24, 415705 (2013)

    Google Scholar 

  30. H. Masuda, A. Ebata, K. Teramae, N. Hishinuma, NetsuBussei 7, 227–233 (1993)

    CAS  Google Scholar 

  31. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles. ASME Fluids Eng. Div. (Publ) FED 231, 99–105 (1995)

    CAS  Google Scholar 

  32. M. Kole, T.K. Dey, Appl. Thermal Eng. 50, 763–770 (2013)

    CAS  Google Scholar 

  33. W. Yu, H. Xie, L. Chen, Y. Li, Powder Technol. 197, 218–221 (2010)

    CAS  Google Scholar 

  34. T. Wejrzanowski, M. Grybczuk, M. Chmielewski, K. Pietrzak, K.J. Kurzydlowski, A. Strojny-Nedza, Mater. Des. 99, 163–173 (2016)

    CAS  Google Scholar 

  35. M. Farbod, A. Ahangarpour, S.G. Etemad, Particuology 22, 59–65 (2015)

    CAS  Google Scholar 

  36. S. Lee, S.U.S. Choi, S. Li, J.A. Eastman, J. Heat Transfer 121, 280–289 (1999)

    CAS  Google Scholar 

  37. S.M.S. Murshed, K.C. Leong, C. Yang, Int. J. Therm. Sci. 44, 367–373 (2005)

    CAS  Google Scholar 

  38. A.K. Jaiswal, M. Wan, S. Singh, D.K. Singh, R.R. Yadav, D. Singh, G. Mishra, J. Nanofluids 5, 1–6 (2016)

    Google Scholar 

  39. A.K. Jaiswal, S. Singh, A. Singh, R.R. Yadav, P. Tandon, B.C. Yadav, Mater. Chem. Phys. 154, 16–21 (2015)

    CAS  Google Scholar 

  40. P.S. Epstein, R.R. Carhart, J. Acoust. Soc. Am. 25, 553–565 (1953)

    Google Scholar 

  41. R. Kumar, B.C. Yadav, Mater. Lett. 167, 300–302 (2016)

    CAS  Google Scholar 

  42. S. Sikarwar, B.C. Yadav, Sens. Actuators A 233, 54–70 (2015)

    CAS  Google Scholar 

  43. D.H. Kumar, H.E. Patel, V.R. Rajeev Kumar, T. Sundararajan, T. Pradeep, S.K. Das, Phys. Rev. Lett. 93, 144301–144304 (2004)

    Google Scholar 

  44. R. Prasher, P. Bhattacharya, P.E. Phelan, Phys. Rev. Lett. 94, 025901–025905 (2005)

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge SAIF, IIT Bombay for SEM and TEM measurements. A.K. Jaiswal gratefully acknowledges to University Grants Commission, New Delhi, India for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aashit Kumar Jaiswal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jaiswal, A.K., Sikarwar, S., Singh, S. et al. Fabrication of nanostructured magnesium ferrite polyhedrons and their applications in heat transfer management and gas/humidity sensors. J Mater Sci: Mater Electron 31, 80–89 (2020). https://doi.org/10.1007/s10854-019-01099-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01099-1

Navigation