Skip to main content
Log in

Dangling bond defects in silicon-passivated strained-Si1−xGex channel layers

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Dangling bond defects (DBs) in silicon-passivated (1- or 3-nm thick Si cap) strained-(100)Si1−xGex (x = 0.25–0.55) layers at interfaces with 1.8-nm thick HfO2 gate dielectric are studied by means of Electron Spin Resonance (ESR) spectroscopy. The results suggest a dominant contribution of Si DBs (Pb0 centers), a considerable fraction of which is located at the interface between the Si substrate crystal and the pseudomorphic Si1−xGex film. The density of Si DBs in the Ge containing samples is significantly lower than at the reference (100)Si/ HfO2 interface and decreases below the ESR detection limit (≈ 0.8 × 1011cm−2) with increasing thickness and Ge concentration in the Si1−xGex layer. However, the beneficial effect of Ge becomes less pronounced when the thickness of the Si cap is reduced to 1 nm or in the case of direct deposition of HfO2 on top of uncapped Si1−xGex. From these observations we conclude that DBs are eliminated due to in-diffusion of Ge from the Si1−xGex channel into interfacial Si layers, bringing the concentration of Ge to the range in which generation of Si DBs becomes energetically unfavourable, in agreement with previous observations on condensation-grown Si1−xGex layers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. P. Balk, Ext. Abstr. Electron. Div. 14(1), 237 (1965)

    Google Scholar 

  2. G.J. Gerardi, E.H. Poindexter, M. Harmatz, W.L. Warren, E.H. Nicollian, A.H. Edwards, J. Electrochem. Soc. 138, 3765 (1991)

    Article  CAS  Google Scholar 

  3. C.E. Blat, E.H. Nicollian, E.H. Poindexter, J. Appl. Phys. 69, 1712 (1991)

    Article  Google Scholar 

  4. C.R. Helms, E.H. Poindexter, Rep. Progr. Phys. 57, 791 (1994)

    Article  CAS  Google Scholar 

  5. T. Grasser (ed.), Bias Temperature Instability for Devices and Circuits (Springer, Dordrecht, 2014) and references therein

    Google Scholar 

  6. A. Kerber, A. Maitra, A. Majumdar, M. Hargrowe, R.J. Carter, E.A. Cartier, IEEE Trans. Electron Dev. 55, 3175 (2008)

    Article  CAS  Google Scholar 

  7. L. Stesmans, J. Appl. Phys. 93, 1317 (2002)

    Article  Google Scholar 

  8. Stesmans, V.V. Afanas’ev, Phys. Rev. B 54, 11129 (1996)

    Article  Google Scholar 

  9. V.V. Afanas’ev, A. Stesmans, J. Electrochem. Soc. 146, 3409 (1999)

    Article  Google Scholar 

  10. T. Ando, Materials 5, 478 (2012)

    Article  CAS  Google Scholar 

  11. E. Cartier, A. Kerber, T. Ando, M.M. Frank, K. Choi, S. Krishnan, B. Linder, K. Zhao, F. Monsieur, J.H. Stathis, V. Narayanan, In: Proceedings of IEEE International Electron Devices Meeting, Washington, DC, USA, 5–7 December 2011; pp. 18.4.1–18.4.4

  12. J. Kaczer, P. Franco, J. Roussel, A. Veloso, G. Groesenecken, Microelectron. Eng. 86, 1582 (2009)

    Article  CAS  Google Scholar 

  13. J. Franco, B. Kaczer, P.J. Roussel, J. Mitard, P. Cho, L. Witters, T. Grasser, G. Groeseneken, IEEE Trans. Electron. Dev. 60, 396 (2013)

    Article  CAS  Google Scholar 

  14. J. Franco, B. Kaczer, Bias Temperature Instability for Devices and Circuits (Springer, Dordrecht, 2014), p. 615

    Book  Google Scholar 

  15. V.V. Afanas’ev, M. Houssa, A. Stesmans, L. Souriau, M. Meuris, R. Loo, M. Heyns, Appl. Phys. Lett. 95, 222106 (2009)

    Article  Google Scholar 

  16. M. Meuris, S. Verhaverbeke, P.W. Mertens, H.F. Schmidt, M.M. Heyns, M. Kubota, A. Philipossian, K. Dillenbeck, D. Graf, A. Schnegg, R. De Blank, Microelectron. Eng. 22, 21 (1993)

    Article  CAS  Google Scholar 

  17. N.H. Thoan, M. Jivanescu, B. O’Sullivan, L. Pantisano, I. Gordon, V.V. Afanas’ev, A. Stesmans, Appl. Phys. Lett. 100, 142101 (2012)

    Article  Google Scholar 

  18. M.J. Uren, K.M. Brunson, J.H. Stathis, E. Cartier, Microelectron. Eng. 36, 219 (1997)

    Article  CAS  Google Scholar 

  19. M.J. Uren, V. Nayar, K.M. Brunson, C.J. Anthony, J.H. Stathis, E. Cartier, J. Electrochem. Soc. 145, 683 (1998)

    Article  CAS  Google Scholar 

  20. N.H. Thoan, K. Keunen, V.V. Afanas’ev, A. Stesmans, J. Appl. Phys. 109, 013709 (2011)

    Article  Google Scholar 

  21. A. Stesmans, V.V. Afanas’ev, Phys. Rev. B 57, 10030 (1998)

    Article  CAS  Google Scholar 

  22. S. Takagi, J.L. Hoyt, K. Rim, J.J. Welser, J.F. Gibbons, IEEE Trans. Electron Dev. 45, 494 (1998)

    Article  CAS  Google Scholar 

  23. V.V. Afanas’ev, A. Stesmans, L. Souriau, R. Loo, M. Meuris, Appl. Phys. Lett. 94, 172106 (2009)

    Article  Google Scholar 

  24. A. Stesmans, P. Somers, V.V. Afanas’ev, Phys. Rev. B 79, 195301 (2009)

    Article  Google Scholar 

  25. B. Vincent, et al., Solid State Electron. 60, 116 (2011)

    Article  CAS  Google Scholar 

  26. F.E. Leys et al., Mat. Sci. Semicond. Proc. 9, 679 (2006)

    Article  CAS  Google Scholar 

  27. Y.W. Dong, P.M. Mooney, F.Y. Cai, D. Anjum, N. Ur-Rehman, X.X. Zhang, G.R. Xia, ECS J. Solid State Sci.Technol. 3, P302 (2014)

    Article  CAS  Google Scholar 

  28. M.M. Frank, E.A. Cartier, T. Ando, S.W. Bendell, J. Bruley, Y. Zhu, V. Narayanan, ECS Solid State Lett. 2, N8 (2013)

    Article  CAS  Google Scholar 

  29. Y.S. Lim, J.S. Cheong, J.Y. Lee, H.S. Kim, H.K. Shon, H.K. Kim, D.W. Moon, Appl. Phys. Lett. 79, 3606 (2001)

    Article  CAS  Google Scholar 

  30. Y.S. Lim, J.Y. Lee, H.S. Kim, D.W. Moon, Appl. Phys. Lett. 80, 2481 (2002)

    Article  CAS  Google Scholar 

  31. L. Souriau, V. Terzieva, W. Vandervorst, F. Clemente, B. Brijs, A. Moussa, M. Meuris, R. Loo, M. Caymax, Thin Solid Films 517, 23 (2008)

    Article  CAS  Google Scholar 

  32. L. Souriau, T. Nguyen, E. Augendre, R. Loo, V. Terzieva, M. Caymax, S. Cristoloveanu, M. Meuris, W. Vandervorst, J. Electrochem. Soc. 156, H208 (2009)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. V. Afanas’ev.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Madia, O., Kepa, J., Afanas’ev, V.V. et al. Dangling bond defects in silicon-passivated strained-Si1−xGex channel layers. J Mater Sci: Mater Electron 31, 75–79 (2020). https://doi.org/10.1007/s10854-019-01098-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01098-2

Navigation