Skip to main content
Log in

Characterization of strain relaxation behavior in Si1−xGex epitaxial layers by dry oxidation

  • Published:
Journal of the Korean Physical Society Aims and scope Submit manuscript

An Erratum to this article was published on 15 December 2017

Abstract

We fabricated fully strained Si0.77Ge0.23 epitaxial layers on Si substrates and investigated their strain relaxation behaviors under dry oxidation and the effect of oxidation temperatures and times. After the oxidation process, a Ge-rich layer was formed between the oxide and the remaining Si0.77Ge0.23 layer. Using reciprocal space mapping measurements, we confirmed that the strain of the Si0.77Ge0.23 layers was efficiently relaxed after oxidation, with a maximum relaxation value of ~ 70% after oxidation at 850 °C for 120 min. The surface of Si0.77Ge0.23 layer after strain relaxation by dry oxidation was smoother than a thick Si0.77Ge0.23 layer, which achieved a similar strain relaxation value by increasing the film thickness. Additionally, N2 annealing was performed in order to compare its effect on the relaxation compared to dry oxidation and to identify relaxation mechanisms, other than the thermally driven ones, occurring during dry oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. M. Ransom, T. N. Jackson and J. F. DeGelormo, IEEE Trans. Electron Devices 38, 2695 (1991).

    Article  ADS  Google Scholar 

  2. U. König and F. Schäffler, IEEE Electron Device Lett. 14, 205 (1993).

    Article  ADS  Google Scholar 

  3. G. Höck, T. Hackbarth, U. Erben, E. Kohn and U. König, Electron. Lett. 34, 1888 (1998).

    Article  Google Scholar 

  4. D. Reinking, M. Kammler, N. Hoffman, M. Horn-von Hoegen and K. R. Hofmann, Electron. Lett. 35, 503 (1999).

    Article  Google Scholar 

  5. S. J. Koester, R. Hammond and J. O. Chu, IEEE Electron Device Lett. 21, 110 (2000).

    Article  ADS  Google Scholar 

  6. M. L. Lee, C. W. Leitz, Z. Cheng, D. A. Antoniadis and E. A. Fitzgerald, Appl. Phys. Lett. 79, 3344 (2001).

    Article  ADS  Google Scholar 

  7. P. M. J. Marée, K. Nakagawa, F. M. Mulders, J. F. van der Veen and K. L. Kavanagh, Surf. Sci. 191, 305 (1987).

    Article  ADS  Google Scholar 

  8. D. J. Eaglesham and M. Cerullo, Phys. Rev. Lett. 64, 1943 (1990).

    Article  ADS  Google Scholar 

  9. J. Liu, H. J. Kim, O. Hul’ko, Y. H. Xie, S. Sahni, P. Bandaru and E. Yablonovitch, J. Appl. Phys. 96, 916 (2004).

    Article  ADS  Google Scholar 

  10. J. Tersoff and F. K. LeGoues, Phys. Rev. Lett. 72, 3570 (1994).

    Article  ADS  Google Scholar 

  11. E. A. Fitzgerald, Y-H. Xie, M. L. Green, D. Brasen, A. R. Kortan, J. Michel, Y-J. Mii and B. E. Weir, Appl. Phys. Lett. 59, 811 (1991).

    Article  ADS  Google Scholar 

  12. K. K. Linder, F. C. Zhang, J-S. Rieh, P. Bhattacharya and D. Houghton, Appl. Phys. Lett. 70, 3224 (1997).

    Article  ADS  Google Scholar 

  13. V. Terzieva, L. Souriau, F. Clemente, A. Benedetti, M. Caymax and M. Meuris, Mater. Sci. Semicond. Process. 9, 449 (2006).

    Article  Google Scholar 

  14. B. Abeles, Phys. Rev. 131, 1906 (1963).

    Article  ADS  Google Scholar 

  15. H. Stohr and W. Klemm, Z. Anorg. Allg. Chem. 241, 304 (1954).

    Google Scholar 

  16. J. Garg, N. Bonini, B. Kozinsky and N. Marzari, Phys. Rev. Lett. 106, 045901 (2011).

    Article  ADS  Google Scholar 

  17. B. Holländer, S. Mantl, R. Liedtke, S. Mesters, H-J. Herzog, H. Kibbel and T. Hackbarth, Nucl. Instr. And Meth. In Phys. Res. B 148, 200 (1999).

    Article  ADS  Google Scholar 

  18. H. Trinkaus, B. Holländer, St. Rongen, S. Mantl, H-J. Herzog, J. Kuchenbecker and T. Hackbarth, Appl. Phys. Lett. 76, 3552 (2000).

    Article  ADS  Google Scholar 

  19. B. Holländer, St. Lenk, S. Mantl, H. Trinkaus, D. Kirch, M. Luysberg, T. Hackbarth, H-J. Herzog and P. F. P. Fichtner, Nucl. Instr. And Meth. In Phys. Res. B 175, 357 (2001).

    Article  ADS  Google Scholar 

  20. S. Nakaharai, T. Tezuka, N. Sugiyama, Y. Moriyama and S-I. Takagi, Appl. Phys. Lett 83, 3516 (2003).

    Article  ADS  Google Scholar 

  21. T. Tezuka, N. Sugiyama, T. Mizuno and S. Takagi, IEEE Trans. Electron Devices 50, 1328 (2003).

    Article  ADS  Google Scholar 

  22. B-G. Min, Y. H. Pae, K. S. Jun, D-H. Ko, H. Kim, M-H. Cho and T-W. Lee, J. Appl. Phys. 100, 016102 (2006).

    Article  ADS  Google Scholar 

  23. B-G Min, J-H. Yoo, H-C. Sohn, D-H. Ko, M-H. Cho and T-W. Lee, Electrochem. Solid-State Lett. 11, H96 (2008).

    Article  Google Scholar 

  24. B-G. Min, J-H. Yoo, H-C. Sohn, D-H. Ko, M-H. Cho, K-B. Chung and T-W. Lee, Thin Solid Films 518, 2065 (2010).

    Article  ADS  Google Scholar 

  25. J-H. Yoo, S-W. Kim, B-G. Min, H-C. Sohn and D-H. Ko, J. Vac. Sci. Technol. B 28, 1298 (2010).

    Article  Google Scholar 

  26. F. K. LeGoues, R. Rosenberg, T. Nguyen, F. Himpsel and B. S. Meyerson, J. Appl. Phys. 65, 1724 (1989).

    Article  ADS  Google Scholar 

  27. D. Nayak, K. Kamjoo, J. C. S. Woo, J. S. Park and K. L. Wang, Appl. Phys. Lett. 56, 66 (1990).

    Article  ADS  Google Scholar 

  28. D. K. Nayak, K. Kamjoo, J. S. Park, J. C. S. Woo and K. L. Wang, Appl. Phys. Lett. 57, 369 (1990).

    Article  ADS  Google Scholar 

  29. F. K. LeGoues, R. Rosenberg and B. S. Meyerson, Appl. Phys. Lett. 54, 644 (1989).

    Article  ADS  Google Scholar 

  30. M. Bruel, B. Aspar and A-J. Auberton-Herve, Jpn. J. Appl. Phys. 36, 1636 (1997).

    Article  ADS  Google Scholar 

  31. T. Mizuno, S. Takagi, N. Sugiyama, H. Satake, A. Kurobe and A. Toriumi, IEEE Electron Device Lett. 21, 230 (2000).

    Article  ADS  Google Scholar 

  32. F. K. LeGoues, B. S. Meyerson and F. J. Morar, Phys. Rev. Lett. 66, 2903 (1991).

    Article  ADS  Google Scholar 

  33. F. K. LeGoues, Phys. Rev. Lett. 72, 876 (1994).

    Article  ADS  Google Scholar 

  34. G. L. McVay and A. R. Ducharme, Phys. Rev. B 9, 627 (1974).

    Article  ADS  Google Scholar 

  35. N. E. B. Cowern, P. C. Zalm, P. van der Sluis, D. J. Gravesteijn and W. B. de Boer, Phys. Rev. Lett. 72, 2585 (1994).

    Article  ADS  Google Scholar 

  36. B. Fultz and J. Howe, Transmission Electron Microscopy and Diffractometry of Materials, 4th ed. (Springer-Verlag, Berlin, 2013), Chap. 12, p. 587.

    Book  Google Scholar 

  37. U. Pietsch, V. Holy and T. Baumbach, High-Resolution X-ray Scattering: From Thin Film s to Lateral Nanostructures, 2nd ed. (Springer-Verlag, New York, 2004), Chap. 10, p. 228.

    Book  Google Scholar 

  38. J. J. Wortman and R. A. Evans, J. Appl. Phys. 36, 153 (1965).

    Article  ADS  Google Scholar 

  39. M. A. Lutz, R. M. Feenstra, F. K. LeGoues, P. M. Mooney and J. O. Chu, Appl. Phys. Lett. 66, 724 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dae-Hong Ko.

Additional information

A correction to this article is available at http://dx.doi.org/10.3938/jkps.71.1075

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jang, H., Kim, B., Koo, S. et al. Characterization of strain relaxation behavior in Si1−xGex epitaxial layers by dry oxidation. J. Korean Phys. Soc. 71, 701–706 (2017). https://doi.org/10.3938/jkps.71.701

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.3938/jkps.71.701

Keywords

Navigation