Skip to main content
Log in

Acetone sensor based on Ni doped ZnO nanostructues: growth and sensing capability

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work presents the preparation of nanostructured zinc oxide (ZnO) thin films doped nickel (Ni) with the molar ratios [Ni]/[Zn] = 0.5; 1; 1.5; 2% M, using low cost spray pyrolysis method. Different characterization techniques were established, such as: X-ray diffraction that showed the hexagonal structure of the films confirmed by Raman spectroscopy. The grain size variations and the morphology according to doping levels were analyzed by scanning electron microscopy. Optical analysis was carried out, the films are transparent and the band gap energy varies opposing to Urbach energy. From experimental data, we observed that 2% Ni doped ZnO exhibited good characteristics and properties compared to pure ZnO and followed by the other samples. The gas testing confirmed the previous concepts, proving that 2% of nickel added to the basic solution enhanced; response/recovery time, response of the sensor and optimal working temperature. This sample demonstrated better selectivity to acetone detection with high response reaching 90, at 450 °C under 100 ppm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. S. Basu, A. Dutta, Modified heterojunction based on zinc oxide thin film for hydrogen gas-sensor application. Sens. Actuator B 22, 83–87 (1994)

    Article  Google Scholar 

  2. N. Zhang, K. Yu, Q. Li, Z.Q. Zhu, Q. Wan, Room-temperature high-sensitivity H2S gas sensor based on dendritic ZnO nanostructures with macroscale in appearance. J. Appl. Phys. 103, 104–305 (2008)

    Google Scholar 

  3. R. Ferro, J.A. Rodriguez, P. Bertrand, Development and characterization of a sprayed ZnO thin film-based NO2 sensor. Phys. Stat. Sol. (c) 10, 3754–3757 (2005)

    Article  Google Scholar 

  4. C.Y. Liu, C.F. Chen, J.P. Leu, The assessment for sensitivity of a NO2 gas sensor with ZnGa2O4/ZnO core-shell nanowires—a novel approach. J. Electrochem. Soc. 156, J16–J19 (2009)

    Article  Google Scholar 

  5. H.H. His, C.K. Tsai, M. Wang, Y.J. Tuan, H.P. Wang, Detection of ethanol vapour with Al-incorporated ZnO thin films. J. Exp. Nanosci. 6, 7–12 (2011)

    Article  Google Scholar 

  6. Y. He, Y.-Q. Liu, J.-N. Ma, D.-D. Han, J.-W. Mao, C.-H. Han, Y.-L. Zhang, Facile fabrication of high-performance humidity sensors by flash reduction of GO. ‎IEEE Sens. J. 17, 5285–5289 (2017)

    Article  Google Scholar 

  7. V.S. Vaishnav, S.G. Patel, J.N. Panchal, Development of ITO thin films sensor for detection of benzene. Sens. Actuator B 206, 381–388 (2015)

    Article  Google Scholar 

  8. O.D. Sparkman, Z. Penton, F. Kitson, Gas Chromatography and Mass Spectrometry: A Practical Guide (Academic Press, Elsevier, 2011)

    Google Scholar 

  9. D.D. Lee, D.-S. Lee, Environmental gas sensors. IEEE Sens. J. 1(3), 214–225 (2001)

    Article  Google Scholar 

  10. M. Ippommatsu. H. Ohnishi, H. Sasaki, T. Matsumoto, Study of the sensing mechanism of tin oxide flammable gas sensors using the Hall effect. J. Appl. Phys. 69, 8368 (1991)

    Article  Google Scholar 

  11. M. Proença, J. Borges, M.S. Rodrigues, R.P. Domingues, J.P. Dias, J. Trigueiro, N. Bundaleski, O. Teodoro, F. Vaz, Development of Au/CuO nanoplasmonic thin films for sensing applications. Surf. Coat. Technol. 343, 178–185 (2018)

    Article  Google Scholar 

  12. Z. El khalidi et al., Nickel oxide optimization using Taguchi design for hydrogen detection. Int. Urnal Hydrog. Energy (2018). https://doi.org/10.1016/j.ijhydene.2018.04.162

    Google Scholar 

  13. A. Sharma, M. Tomar, V. Gupta, SnO2 thin film sensor with enhanced response for NO2 gas at lower temperatures. Sens. Actuator B 156, 743–752 (2011)

    Article  Google Scholar 

  14. D. Zhang, J. Wu, P. Li, Y. Cao, Room-room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: an experimental and density functional theory investigation. J. Mater. Chem. A 5, 20666–22067 (2017)

    Article  Google Scholar 

  15. D. Zhang, J. Liu, H. Chang, A. Liu, B. Xia, Characterization of a hybrid composite of SnO2 nanocrystal-decorated reduced graphene oxide for ppm-level ethanol gas sensing application. RSC Adv. 5, 18666–18672 (2015)

    Article  Google Scholar 

  16. D. Zhang, A. Liu, H. Chang, B. Xia, Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2-reduced graphene oxide hybrid composite. RSC Adv. 5, 3016–3022 (2015)

    Article  Google Scholar 

  17. D. Zhang, N. Yin, B. Xia, Facile fabrication of ZnO nanocrystalline-modified graphene hybrid nanocomposite toward methane gas sensing application. J. Mater. Sci. Mater. Electron. 26(8), 5937–5937 (2015)

    Article  Google Scholar 

  18. C. Jie, G. Xin-shi, Single-layer heat mirror films and an improved method for evaluation of its optical and radiative properties in infrared. Sol. Energy Mater. Sol. Cells 55, 323–329 (1998)

    Article  Google Scholar 

  19. P. Jin, L. Miao, Formation and characterization of TiO2 thin films with application to a multifunctional heat mirror. Appl. Surf. Sci. 212–213, 775–781 (2003)

    Article  Google Scholar 

  20. J.Y. Lee, J.H. Lee, H. Seung Kim, C.-H. Lee, H.-S. Ahn, H.K. Cho, Y.Y. Kim, B.H. Kong, H.S. Lee, A study on the origin of emission of the annealed n-ZnO/p-GaN heterostructure LED. Thin Solid Films 517(17), 5157–5160 (2009)

    Article  Google Scholar 

  21. J. Nishino, T. Kawarada, S. Ohisho, H. Saitoh, K. Maruyama, K. Kamata, Conductive indium-doped zinc oxide films prepared by atmos-. pheric-pressure chemical vapour deposition. J. Mater. Sci. Lett. 1, 629 (1997)

    Article  Google Scholar 

  22. M. Ritala, T. Asikanen, M. Leskelä, J. Skarp, Coating on glass. Mater. Res. Soc. Symp. Proc. 426, 513 (1996)

    Article  Google Scholar 

  23. R. Wang, L.L.H. King, W.W. Sleight, Handbook of transparent conductors. J. Mater. Res. 11, 1659 (1996)

    Article  Google Scholar 

  24. V. Gupta, A. Mansingh, Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film. J. Appl. Phys. 80, 1063 (1996)

    Article  Google Scholar 

  25. G.K. Mani, J.B.B. Rayappan, Selective detection of ammonia using spray pyrolysis deposited pure and nickel doped ZnO thin films. Appl. Surf. Sci. 311, 405–412 (2014)

    Article  Google Scholar 

  26. Y.S. Yoon, S.H. Jee, N. Kakati, J. Maiti, D.J. Kim, S.H. Lee, H.H. Yoon, Work function effect of ZnO thin film for acetone gas detection. Ceram. Int. 38S, S653–S656 (2012)

    Article  Google Scholar 

  27. J. Wang, J. Yang, N. Han, X. Zhou, S. Gong, J. Yang, P. Hu, Y. Chen, Highly sensitive and selective ethanol and acetone gas sensors based on modified ZnO nanomaterials. Mater. Des. 121, 69–76 (2017)

    Article  Google Scholar 

  28. M.D. Giulio, G. Micocci, A. Serra, A. Tepore, R. Rella, P. Siciliano, SnO2 thin films for gas sensor prepared by r.f. reactive sputtering. Sens. Actuator B 25, 465–468 (1995)

    Article  Google Scholar 

  29. D. Talantikite-Touati, H. Merzouk, H. Haddad, A. Tounsi, Effect of dopant concentration on structural and optical properties Mn doped ZnS films prepared by CBD method. Optik 136, 362–367 (2017)

    Article  Google Scholar 

  30. Y. Ammaih, A. Lfakir, B. Hartiti, A. Rifah, Optimization of parameters for deposition of ZnO films by sol gel using Taguchi method. Mol. Crys. 627(1), 176–182 (2016)

    Article  Google Scholar 

  31. S.V. Fokina, E.N. Borisov, V.V. Tomaev, AgI thin films prepared by laser ablation. Solid State Ion 297, 64–67 (2016)

    Article  Google Scholar 

  32. S. Mani Menaka, G. Umadevia, Effect of copper concentration on the physical properties of copper doped NiO thin films deposited by spray pyrolysis. Mater. Chem. Phys. 191, 181–187 (2017)

    Article  Google Scholar 

  33. Z. El khalidi, S. Fadili, B. Hartiti, A. Lfakir, P. Thevenin, M. Siadat, Behavior of NiO thin films sprayed at different annealing time. Opt. Quant. Electron. 48, 427 (2016)

    Article  Google Scholar 

  34. S. Bhuvana, H.B. Ramalingam, K. Vadivel, E.R. Kumar, A.I. Ayesh, Effect of Zn and Ni substitution on structural, morphological and magnetic properties of tin oxide nanoparticles. J. Magn. Magn. Mater. 419, 429–434 (2016)

    Article  Google Scholar 

  35. Pistorius, C.W.F.T. Pistorius, Some phase relations in the system Co0-SiO2-H30, NiO-SiO2-H20 and ZnO-SiO2-H.0 to high pressures and temperatures. Neues Jahrb Mineral. Monatsh 30–57 (1963)

  36. S. Rani, P. Suri, P.K. Shishodia, R.M. Mehra, Synthesis of nanocrystalline ZnO powder via sol–gel route for dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells. 92, 1639–1645 (2008)

    Article  Google Scholar 

  37. G.K. Williamson, R.E. Smallman, Dislocation densities in some annealed and cold worked metals from measurements on the X ray debyescherrer spectrum. Philos. Mag. 1, 34–46 (2006)

    Article  Google Scholar 

  38. B. Mar, M. Mollar, D. Soro, R. Henrquez, R. Schrebler, H. Gmez, Synthesis of nickel oxide active carbon and electrochemical performance. Int. J. Electrochem. Sci. 8, 3510–3523 (2013)

    Google Scholar 

  39. S. Gao, M. Fivel, 3D discrete dislocation dynamics study of creep behavior in Ni-base single crystal superalloys by a combined dislocation climb and vacancy diffusion model. J. Mech. Phys. Solids 102, 209–223 (2017)

    Article  Google Scholar 

  40. Z. El khalidi, B. Hartiti, S. Fadili, A. Lfakir, P. Thevenin, Elaboration of ZnO: Ga thin films by spray pyrolysis for photovoltaic applications. Proceeding European PV Solar Energy Conference and Exhibition, 20–24 June, ICM, Munich, 1161–1165 (2016)

  41. D.E. Milovzorova, A.M. Alic, T. Inokumac, Y. Kuratac, T. Suzukib, S. Hasegawa, Optical properties of silicon nanocrystallites in polycrystalline silicon films prepared at low temperature by plasma-enhanced chemical vapor deposition. Thin Solid Films 382, 47–55 (2001)

    Article  Google Scholar 

  42. Y. Yasaki, N. Sonoyama, Semiconductor sensitization of colloidal In2S3 on wide gap semiconductors. Electroanal. Chem. 469, 116–122 (1999)

    Article  Google Scholar 

  43. V.A. Vilkotskii, D.S. Domanevskii, R.D. Kakanakov, V.V. Krasovskii, V.D. Tkachev, Burstein-Moss effect and near-band-edge luminescence spectrum of highly doped indium arsenide. Phys. Status Solidi 91(1), 71–81 (1979)

    Article  Google Scholar 

  44. S. John, C. Soukoulis, M.H. Cohen, E.N. Economou, Theory of electron band tails and the Urbach optical absorption edge. Phys. Rev. Lett. 57, 1777–1780 (1986)

    Article  Google Scholar 

  45. R. Ferro, J.A. Rodrˇııguez, Some physical properties of F-doped CdO thin films deposited by spray pyrolysis. Thin Solid Films 347, 295–298 (1999)

    Article  Google Scholar 

  46. G. Sberveglieri, G. Faglia, C. Perego, P. Nelli, R.N. Marks, T. Virgili, C. Taliani, Zamboni, R 1996 Hydrogen and humidity sensing properties of C60, thin films Synth. Met. 77, 273–275 (2012)

    Google Scholar 

  47. V. Galstyan, E. Comini, C. Baratto, G. Sberveglieri, Nanostructured ZnO chemical gas sensors. Ceram Inter 41, 14239–14244 (2015)

    Article  Google Scholar 

  48. S. Kim, S. Park, S. Park, C. Lee, Acetone sensing of Au and Pd-decorated WO3 nanorod sensors. Sens. Actuators B 209, 180–185 (2015)

    Article  Google Scholar 

  49. M. Ge, T. Xuan, G. Yin, J. Lu, D. He, Controllable synthesis of hierarchical assembled porous ZnO microspheres for acetone gas sensor. Sens. Actuators B 220, 356–361 (2015)

    Article  Google Scholar 

  50. X. Zhou, J. Liu, C. Wang, P. Sun, X. Hu, X. Li, K. Shimanoe, N. Yamazoe, G. Lu, Highly sensitive acetone gas sensor based on porous ZnFe2O4 nanospheres. Sens. Actuators B 206, 577–583 (2015)

    Article  Google Scholar 

  51. Y. Lin, W. Wei, Y. Wang, J. Zhou, D. Sun, X. Zhang, S. Ruan, Highly stabilized and rapid sensing acetone sensor based on Au nanoparticle-decoratedflower-like ZnO microstructures. J. Alloy. Compd. 650, 37–44 (2015)

    Article  Google Scholar 

  52. I. Hayakawa, Y. Iwamoto, K. Kikuta, S. Hirano, Gas sensing properties of platinum dispersed-TiO2 thin film derived from precursor. Sens. Actuators B 62, 55–60 (2000)

    Article  Google Scholar 

  53. N. E.Wongrat, C. Chanlek, W. Ch, Thup, Acetone gas sensors based on ZnO nanostructures decorated with Pt and Nb. Ceram. Inter. 43, S557–S566 (2017)

    Article  Google Scholar 

  54. Z. El khalidi, E. Comini, B. Hartiti, A. Moumen, Effect of vanadium doping on ZnO sensing properties synthesized by spray pyrolysis. Mater. Des. 139, 56–64 (2018)

    Article  Google Scholar 

  55. N. Yamazoe, G. Sakai, K. Shimanoe, Oxide semiconductor gas sensors. Catal. Surv. Asia 7, 63–75 (2003)

    Article  Google Scholar 

  56. D. Sett, D. Basak, Highly enhanced H2 gas sensing characteristics of Co:ZnO nanorods and its mechanism. Sens. Actuator B 243, 475–483 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Prof. Bouchaib HARTITI, Senior Associate at ICTP (The Abdus Salam International Centre for Theoretical Physics), is very grateful to ICTP for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahira El khalidi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El khalidi, Z., Hartiti, B., Siadat, M. et al. Acetone sensor based on Ni doped ZnO nanostructues: growth and sensing capability. J Mater Sci: Mater Electron 30, 7681–7690 (2019). https://doi.org/10.1007/s10854-019-01083-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01083-9

Navigation