Skip to main content
Log in

Acetone sensor based on porous nickel ferrite nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, porous nanoparticles of nickel ferrite were synthesized by a facile hydrothermal approach. By using glass substrates, a low-cost sensor was fabricated based on this nanostructure to detect acetone. The structural and morphological characteristics were investigated by X-Ray diffraction (XRD), Field Emission Electron Microscopy (FESEM), Energy Dispersive X-Ray (EDX), Transmission Electron Microscopy (TEM), Fourier Transform Infrared (FTIR), and Brunauer–Emmett–Teller (BET) techniques. The sensing properties were evaluated at different temperatures and acetone concentrations. The results show that the fabricated n-type sensor has a high response value (78%) toward 100 ppm acetone at the optimum operating temperature of 190 °C. Furthermore, it shows excellent repeatability and long-term stability. The sensor is easily reversible and the response time is 30 s. The measurements show that the sensor has n-type sensing behavior. Eventually, the gas sensing mechanism to detect acetone vapor can be explained based on the physics of chemical sensors. Overall, the presented acetone sensor has many advantages including low-cost fabrication, excellent repeatability, long-term stability, easy recovery, and also low consumption power due to relatively low operating temperature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data availability

All data obtained and approved in this study are included within this article.

References

  1. Y.C. Lee, H. Huang, O.K. Tan, M.S. Tse, Sens. Actuator B 132, 239 (2008)

    Article  CAS  Google Scholar 

  2. Y. Zhang, X. He, J. Li, Z. Miao, F. Huang, Sens. Actuator B 132, 67 (2008)

    Article  CAS  Google Scholar 

  3. L. Wang, Y. Kang, X. Liu, S. Zhang, W. Huang, S. Wang, Sens. Actuator B 162, 237 (2012)

    Article  CAS  Google Scholar 

  4. H. Xu, X. Liu, D. Cui, M. Li, M. Jiang, Sens. Actuator B 114, 301 (2006)

    Article  CAS  Google Scholar 

  5. X.L. Li, T.J. Lou, X.M. Sun, Y.D. Li, Inorg. Chem. 43, 5442 (2004)

    Article  CAS  Google Scholar 

  6. X.Z. Song, Y.L. Meng, X. Chen, K.M. Sun, X.F. Wang, New J. Chem. 42, 14071 (2018)

    Article  CAS  Google Scholar 

  7. Y. Zhang, C. Jia, Q. Wang, Q. Kong, G. Chen, H. Guan, C. Dong, Nanomaterials 9(8), 1059 (2019)

    Article  CAS  Google Scholar 

  8. L. Li, J. Tan, M. Dun, X. Huang, Sens. Actuator B 248, 85 (2017)

    Article  CAS  Google Scholar 

  9. R. Srivastava, B.C. Yadav, J. Exp. Nanosci. 10, 703 (2015)

    Article  CAS  Google Scholar 

  10. M. Virumbrales, R. Sáez-Puche, V. Blanco-Gutiérrez, M.J. Torralvo-Fernández, J. Phys. Chem. C 121, 4029 (2017)

    Article  CAS  Google Scholar 

  11. A.A. Bagade, V.V. Ganbavle, S.V. Mohite, T.D. Dongale, B.B. Sinha, K.Y. Rajpure, Assessment of structural, morphological, magnetic and gas sensing properties of CoFe2O4 thin films. J Colloid Interface Sci (2017). https://doi.org/10.1016/j.jcis.2017.02.067

    Article  Google Scholar 

  12. K. Chen, C. Xiang, L. Li, H. Qian, Q. Xiao, F. Xu, J. Mater. Chem. 22, 6449 (2012)

    Article  CAS  Google Scholar 

  13. C. Xiangfeng, J. Dongli, Z. Chenmou, Sens. Actuator B 123, 793 (2007)

    Article  Google Scholar 

  14. L. Yang, Y. Xie, H. Zhao, X. Wu, Y. Wang, Solid State Electron. 49, 1029 (2005)

    Article  CAS  Google Scholar 

  15. W.L. Jiao, L. Zhang, Trans. Nonferr. Met. Soc. China 22, 1127 (2012)

    Article  CAS  Google Scholar 

  16. I.G. Blanco-Esqueda, G. Ortega-Zarzosa, J.R. Martínez, A.L. Guerrero, Adv. Mater. Sci. Eng. (2015). https://doi.org/10.1155/2015/678739

    Article  Google Scholar 

  17. C.J. O’Brien, Z. Rák, D.W. Brenner, J. Phys. Chem. C 118, 5414 (2014)

    Article  Google Scholar 

  18. S. Sagadevan, Z.Z. Chowdhury, R.F. Rafique, Mater. Res. 21, 21 (2018)

    Article  Google Scholar 

  19. R. Tiwari, M. De, H.S. Tewari, S.K. Ghoshal, Results Phys. 16, 102916 (2020)

    Article  Google Scholar 

  20. A.B. Gadkari, T.J. Shinde, P.N. Vasambekar, IEEE Sens. J. 11(4), 849–861 (2011)

    Article  CAS  Google Scholar 

  21. S. Ayu, S. Yoshida, H. Ikeda, N. Miura, Sens. Actuator B. 259, 30 (2018)

    Article  Google Scholar 

  22. L. Zhang, W. Jiao, Sens. Actuator B 216, 293 (2015)

    Article  CAS  Google Scholar 

  23. E.R. Kumar, C. Srinivas, M.S. Seehra, M. Deepty, I. Pradeep, A.S. Kamzin, M.V.K. Mehar, N.K. Mohan, Sens. Actuator A 279, 10 (2018)

    Article  CAS  Google Scholar 

  24. S. Zhang, W. Jiang, Y. Li, X. Yang, P. Sun, F. Liu, X. Yan, Y. Gao, X. Liang, J. Ma, G. Lu, Sens. Actuator B 291, 266 (2019)

    Article  CAS  Google Scholar 

  25. L. Lv, Y. Wang, P. Cheng, B. Zhang, F. Dang, L. Xu, Sens. Actuator B (2019). https://doi.org/10.1016/j.snb.2019.126755

    Article  Google Scholar 

  26. S. Mondal, M. Kumari, R. Madhuri, P.K. Sharma, Appl. Phys. A (2017). https://doi.org/10.1007/s00339-017-1107-y

    Article  Google Scholar 

  27. C. Mukherjee, R. Mondal, S. Dey, S. Kumar, J. Das, IEEE Sens. J. 17(9), 2662–2669 (2017)

    Article  CAS  Google Scholar 

  28. F. Tudorache, P. Dorin, M. Dobromir, F. Iacomi, Mater. Sci. Eng. B 178, 1334 (2013)

    Article  CAS  Google Scholar 

  29. L. Siebert, N. Wolff, N. Ababii, M. Terasa, O. Lupan, A. Vahl, V. Duppel, H. Qiu, M. Tienken, M. Mirabelli, V. Sontea, F. Faupel, L. Kienle, R. Adelung, Nano Energy 70, 104420 (2020)

    Article  CAS  Google Scholar 

  30. A. Bensghaïer, N. Kaur, N. Fourati, C. Zerrouki, A. Lamouri, M. Beji, A. Mahajan, M.M. Chehimi, Vacuum, Vacuum 155, 656–661 (2018)

    Article  Google Scholar 

  31. A. Kumar, A. Kumar, N. Kumar, L. Yadava, Vacuum 191, 110363 (2021)

    Article  Google Scholar 

Download references

Funding

This research received no specific grant from any funding agency.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. AR: conceptualization, formal analysis and investigation, experimental design, writing original draft, validation. SD: conceptualization, methodology, writing review and editing, resources, supervision. SH: conceptualization and methodology, materials preparation, data collection and analysis, resources, supervision. all authors read and approved the manuscript.

Corresponding author

Correspondence to Sajjad Dehghani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezaeipour, A., Dehghani, S. & Hoghoghifard, S. Acetone sensor based on porous nickel ferrite nanoparticles. J Mater Sci: Mater Electron 33, 26276–26285 (2022). https://doi.org/10.1007/s10854-022-09311-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-09311-5

Navigation