Skip to main content
Log in

Investigation of electrical, magneto-dielectric and transport properties of multiferroic (1 − x) BiFeO3–(x) BaSr0.7Ti0.3O3 solid solutions

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

A Correction to this article was published on 05 February 2020

This article has been updated

Abstract

To date, many efforts are underway on single-phase multiferroic material to obtain a compound with strong magneto-dielectric coupling, improved dielectric properties and insulation behavior for their practical applications. In this work, high-quality powders of the (1 − x)BiFeO3(BFO)–(x)Ba0.7Sr0.3TiO3(BST) solid solutions were obtained by simple sol–gel assisted route. A detailed study on the interplay between the dielectric, magneto-dielectric and transport properties in ceramic samples is presented. Dielectric analysis reveals anomalies in the proximity of Néel temperature, indicating small magneto-electric coupling, which was confirmed through capacitance versus magnetic field measurements. Analysis of dc electrical response indicates no signature of Poole Frenkel (PF) and Schottky emission (SE) mechanism, but a dominating space charge-limited conduction (SLCS) mechanism was found in the studied samples. It is demonstrated a significant decrease of the current density with the increase of the BST concentration, suppressing the oxygen vacancies presence leading to an oxidation states stabilization of the Fe ions with doping. The results of the ac conductivity analysis suggest a small-polarons hopping mechanism at low-temperature region followed by ionized oxygen vacancies transport in the high-temperature region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Change history

  • 05 February 2020

    The original version of this article unfortunately contained errors in affiliation of the corresponding author and the formula in the title which are very important and impact the article���s content. With this, the authors hereby publish this correction note to correct the Title and the affiliation of the corresponding author.

References

  1. S.V. Kizelev, R.P. Ozerov, G.S. Zhdanov, Detection of magnetic order in ferroelectric BiFeO3 by neutron diffraction. Sov. Phys. Dokl. 145, 1255 (1962)

    Google Scholar 

  2. J.R. Teague, R. Gerson, W.J. James, Dielectric hysteresis in single crystal BiFeO3. Solid State Commun. 8, 1073 (1970)

    CAS  Google Scholar 

  3. M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D 38, R123 (2005)

    CAS  Google Scholar 

  4. P. Royen, K. Swars, Das System Wismutoxyd-Eisenoxyd im Bereich von 0 bis 55 Mol% Eisenoxyd. Angew. Chem. 69, 779 (1957)

    CAS  Google Scholar 

  5. A. Bokov, Z.G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41, 31–52 (2006)

    CAS  Google Scholar 

  6. V.A. Khomchenko, D.A. Kiselev, J.M. Vieira, A.L. Kholkin, M.A. Sa, Y.G. Pogorelov, Synthesis and multiferroic properties of Bi0.8A0.2FeO3 (A = Ca, Sr, Pb) ceramics. Appl. Phys. Lett. 90, 242901–242903 (2007)

    Google Scholar 

  7. P. Uniyal, K.L. Yadav, Study of dielectric, magnetic and ferroelectric properties in Bi1xGdxFeO3, Mater. Lett., 62 2858–28612008

    CAS  Google Scholar 

  8. S.W. Cheong, M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13 (2007)

    CAS  Google Scholar 

  9. W. Eerestein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature London. 442, 759 (2006)

    Google Scholar 

  10. H. Landolt and Landolt- Börnstein, “Ferroelectrics and Related Substances edited by New Series”, Group III 1980 A Springer, Berlin, 16 377

  11. J. Wang, H.B. Neaton, H. Zeng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithya- nathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuting, R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)

    CAS  Google Scholar 

  12. K.Y. Yun, M. Noda, M. Okuyama, Prominent ferroelectricity of BiFeO3 thin films prepared by pulsed-laser deposition. Appl. Phys. Lett. 83, 3981 (2003)

    CAS  Google Scholar 

  13. Y. Wang, Q.H. Jiang, H.C. He, C.W. Nan, Multiferroic BiFeO3 thin films prepared via a simple sol-gel method. Appl. Phys. Lett. 88, 142503 (2006)

    Google Scholar 

  14. Y.H. Lee, J.M. Wu, Y.L. Chueh, L.J. Chou, Low-temperature growth and interface characterization of BiFeO3BiFeO3 thin films with reduced leakage current. Appl. Phys. Lett. 87, 172901 (2005)

    Google Scholar 

  15. Z. Yan, K.F. Wang, J.F. Qu, Y. Wang,, Z.T. Song, S.L. Feng, Processing and properties of Yb-doped BiFeO3 ceramics. Appl. Phys. Lett. 91, 082906 (2007)

    Google Scholar 

  16. J.B. Neaton, C. Ederer, U.V. Waghmare, N.A. Spaldin, K.M. Rob, First principles studies of spontaneous polarization in multiferroic BiFeO3. Phys. Rev. B 71, 014113 (2005)

    Google Scholar 

  17. R.N.P. Choudhary, K. Perez, P. Bhattacharya, R.S. Katiyar, Structural and electrical properties of BiFeO3-Pb(ZrTi)O3 composites. Appl. Phys.A. 86, 131 (2006)

    Google Scholar 

  18. X.D. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus-Driscoll, Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl. Phys. Lett. 86, 062903 (2005)

    Google Scholar 

  19. M. Kumar, K.L. Yadav, Study of room temperature magnetoelectric coupling in Ti substituted bismuth ferrite system. J. Appl. Phys. 100, 07411 (2006)

    Google Scholar 

  20. K. Singh, H. Ishiwara, K. Maruyama, Reduced leakage current in La and Ni coped BiFeO3 thin films. Appl. Phys. Lett. 88, 262908 (2006)

    Google Scholar 

  21. J.K. Kim, S.S. Kim, W.J. Kim, A.S. Bhalla, R. Guo, Enhanced ferroelectric properties of Cr-doped BiFeO3 thin films grown by chemical solution deposition. Appl. Phys. Lett. 88, 132901 (2006)

    Google Scholar 

  22. I.W. Chen, Structural origin of relaxor ferroelectrics—revisited. J. Phys. Chem. Solids 61, 197–208 (2000)

    CAS  Google Scholar 

  23. X.H. Zheng, Z.H. Ma, P.J. Chen, D.P. Tang, N. Ma, Decomposition behavior and dielectric properties of Ti-doped BiFeO3 ceramics derived from the molten salt method. J. Mater. Sci. Mater. Electron. 23, 1533 (2012)

    CAS  Google Scholar 

  24. A.Z. Simo˜es, F.G. Garcia, C.D.S. Riccardi, Rietveld analysis and electrical properties of lanthanum doped BiFeO3 ceramics. Mater. Chem. Phys. 116, 305 (2009)

    Google Scholar 

  25. F. Suhua, X. Xie, F. Zhang, X. Guo, S. Yang, L. Zhang, Improved leakage and ferroelectric properties of Sr doped BiFe0.95Mn0.05O3 thin films. J. Mater. Sci.: Mater. Electron. 27, 6854–6858 (2016)

    Google Scholar 

  26. L.Y. Wang, D.H. Wang, H.B. Huang, Z.D. Han, Q.Q. Cao, B.X. Gu, Y.W. Du, Enhanced dielectric and ferroelectric properties of Ba and Ti co-doped BiFeO3 multiferroic ceramics. J. Alloys Compd. 46, 1–3 (2009)

    CAS  Google Scholar 

  27. Y. Wang, J. Li, J. Chen, Y. Deng, Ba and Ti co-doped BiFeO3 thin films via a modified chemical route with synchronous improvement in ferroelectric and magnetic behaviors. J. Appl. Phys. 113, 103904–103905 (2013)

    Google Scholar 

  28. JianguoZhao YanhongGu, W. Zhang, H. Zheng, L. Liu, W. Chen, Structural transformation and multiferroic properties of Sm and Ti co-doped BiFeO3 ceramics with Fe vacancies. Ceram. Int. 43, 14666–14671 (2017)

    Google Scholar 

  29. Z. Hu, M. Li, Y. Yu, J. Liu, L. Pei, J. Wang et al., Effects of Nd and high-valence Mn co-doping on the electrical and magnetic properties of multiferroic BiFeO3 ceramics. Solid State Commun. 150, 1088–1091 (2010)

    CAS  Google Scholar 

  30. R. Gerber, G. Elbinger, Contribution of Fe2+, Mn3 + and Fe3 + ions to the magnetic anisotropy of MgxMn0.6Fe2.4 – xO4. J. Phys. C. 3, 1363–1375 (1970)

    Google Scholar 

  31. S. Sharma, V. Singh, A. Anshul, J.M. Siqueiros, R. Dwivedi, Structural stability, enhanced magnetic, piezoelectric, and transport properties in (1- x) BiFeO3–(x)Ba0.70Sr0.30TiO3 nanoparticles. J. Appl. Phys. 123, 204102 (2018)

    Google Scholar 

  32. S. Sharma, V. Singh and R.K. Dwivedi, Electrical properties of (1 – x) BFO – (x) PZT multiferroics synthesized by sol-gel method: transition from relaxor to non-relaxor. J. Alloy. Compd. 682, 723–729 (2016)

    CAS  Google Scholar 

  33. B. Keimer, Transition metal oxides - Ferroelectricity driven by orbital order. Nat. Mater. 5, 933 (2006)

    CAS  Google Scholar 

  34. X. Marti, P.J. Ferrer, A. Herrero, J. Narvaez, V. Holy, N. Barrett, M. Alexe, G. Catalan, Skin Layer of BiFeO3 Single Crystals. Phys. Rev. Lett. 106, 236101 (2011)

    Google Scholar 

  35. Y. Ma, X.M. Chen, Enhanced multiferroic characteristics in NaNbO3-modified BiFeO3 ceramics. J. Appl. Phys. 105, 054107 (2009)

    Google Scholar 

  36. R.K. Mishra, D.K. Pradhan, R.N.P. Choudhary, A. Banerjee, Effect of yttrium on improvement of dielectric properties and magnetic switching behavior in BiFeO3. J. Phys. 20, 045218 (2008)

    Google Scholar 

  37. M. Hitesh Borkar, V. Tomar, J.F. Gupta, Scott, A. Kumar, Anomalous change in leakage and displacement currents after electrical poling on lead-free ferroelectric ceramics. Appl. Phys. Lett. 107, 122904 (2015)

    Google Scholar 

  38. A.R. Makhdoom, M.J. Akhtar b, M.A. Rafiq, M.M. Hassan, Investigation of transport behavior in Ba doped BiFeO3. Ceram. Int. 38, 3829–3834 (2012)

    CAS  Google Scholar 

  39. B. Yu, M. Li, J. Liu, D. Guo, L. Pei, X. Zhao, Effects of ion doping at different sites on electrical properties of multiferroic BiFeO3 ceramics. J. Phys. D 41, 065003–65007 (2008)

    Google Scholar 

  40. Z. Yan, K.F. Wang, J.F. Qu, Y. Wang, Z.T. Song, S.L. Feng, Processing and properties of Yb-doped BiFeO3 ceramics. Appl. Phys. Lett. 91, 082906–82908 (2007)

    Google Scholar 

  41. J. Liu, M. Li, L. Pei, J. Wang, Z. Hu, X. Wang, X. Zhao, Effect of Ce and Zr codoping on the multiferroic properties of BiFeO3 thin films. Europhys. Lett. 89, 57004–57010 (2010)

    Google Scholar 

  42. J. Liu, M. Li, L. Pei, B. Yu, D. Guo, X. Zhao, Effect of Ce doping on the microstructure and electrical properties of BiFeO3 thin films prepare by chemical solution deposition. J. Phys. D 42, 115409–115415 (2009)

    Google Scholar 

  43. X. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus-Driscoll, Greatly reduced leakage current and conduction mechanism in aliovalent-iondoped BiFeO3. Appl. Phys. Lett. 86, 062903–62905 (2005)

    Google Scholar 

  44. C.-H. Iakovlev, M. Solterbeck, Kuhnke, M. Es-Souni, Surface scanning probe microscopy investigation of solution deposited BiFeO3BiFeO3 thin films. J. Appl. Phys. 97, 094901 (2005)

    Google Scholar 

  45. Y.J. Wu, Y. Gao, X.M. Chen, Dielectric relaxations of yttrium iron garnet ceramics over a broad temperature range. Appl. Phys. Lett. 91, 92912 (2007)

    Google Scholar 

  46. G.W. Pabst, L.W. Martin, Y.H. Chu, R. Ramesh, Leakage mechanisms in BiFeO3 thin films. Appl. Phys. Lett. 90, 072902 (2007)

    Google Scholar 

  47. R. Moos, W. Menesklou, K.H. Hardtl, Hall mobility of undoped n-type conducting strontium titanate single crystals between 19 K and 1373 K. Appl. Phys. A 61, 389 (1995)

    Google Scholar 

  48. C. Lee, J. Destry, L.J. Brebenerc, Optical absorption and transport in semiconducting SrTi O3. Phys. Rev. B 11, 2299 (1975)

    CAS  Google Scholar 

  49. G.S. Arya, R.K. Kotnala, N.S. Negi, Enhanced magnetic and magnetoelectric properties of In and Co co-doped BiFeO3 nanoparticles at room temperature. J. Nanoparticle Res. 16, 2155 (2014)

    Google Scholar 

  50. D.P. Dutta, B.P. Mandal, R. Naik, G. Lawes, A.K. Tyagi, Magnetic, Ferroelectric, and Magnetocapacitive Properties of Sonochemically Synthesized Sc-Doped BiFeO3 Nanoparticles. J. Phys. Chem. C 117, 2382–2389 (2013)

    CAS  Google Scholar 

  51. D.H. Wang, W.C. Goh, M. Ning, C.K. Ong, Effect of Ba doping on magnetic, ferroelectric, and magnetoelectric properties in mutiferroic BiFeO3 at room temperature. Appl. Phys. Lett. 88, 212907 (2006)

    Google Scholar 

  52. S. Shalini Kumari, D.K. Pradhan, P.T. Das, K. Ortega, A. Pradhan, J.F. Kumar, Scott, R.S. Katiyar, Evidence of strong magneto-dielectric coupling and enhanced electrical insulation at room temperature in Nd and Mn co-doped bismuth ferrite. J. Appl. Phys. 122, 144102 (2017)

    Google Scholar 

Download references

Acknowledgements

Subhash Sharma, acknowledges support from DGPA – UNAM Postdoc fellowship. Some co-authors also acknowledges partial support from CoNaCyT, Grants No. 282778, 280309 and PAPIIT-DGAPA-UNAM Grant No. IN105307, IN109016, and IN107918.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Subhash Sharma.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Cruz, M.P., Siqueiros, J.M. et al. Investigation of electrical, magneto-dielectric and transport properties of multiferroic (1 − x) BiFeO3–(x) BaSr0.7Ti0.3O3 solid solutions. J Mater Sci: Mater Electron 30, 7447–7459 (2019). https://doi.org/10.1007/s10854-019-01058-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01058-w

Navigation