Skip to main content

Advertisement

Log in

Effect of dopant-induced defects on structural, electrical, and enhanced ferromagnetism and magnetoelectric properties of Dy and Sr co-doped BiFeO3

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this report, [Bi0.95Dy0.05FeO3 (BDFO), Bi0.95−xDy0.05SrxFeO3, x = 0.05 (BDSFO-1), and Bi0.95−xDy0.05SrxFeO3, x = 0.10 (BDSFO-2)] ceramics are prepared by the solid-state reaction. Crystal structures of Dy3+ and Sr2+- substituted BFO samples are confirmed as rhombohedral with the space group (R3c) through X-ray diffraction analysis and evidenced with Reitveld refinement. The band gap energy is 2.14, 2.16, and 2.18 eV for BDFO, BDSFO-1 and BDSFO-2, respectively. Characteristic modes in Raman spectra of the samples are denoted as A1-1, A1-2, and A1-3 and E, which are favorable to induce ferroelectricity of BFO. Remnant polarization measured with respect applied electric field (P–E) hysteresis loops of the samples increases with increasing Sr2+ concentration of BDFO. Sr2+-doped BFO samples represent the higher leakage current density than the Dy3+-doped BFO, which is attributed that the Sr2+ ions create the oxygen vacancies in BFO. Ferromagnetic ordering and enhanced saturation magnetizations are observed in magnetic measurements of BDSFO-1 and BDSFO-2 samples at room temperature. Furthermore, characteristics of the magneto-electric coupling were examined in through magneto-capacitance of Sr2+ and Dy3+-substituted BiFeO3 samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. W. Eerenstein, N.D. Mathur, J.F. Scott, Nature 442, 759 (2006)

    Article  Google Scholar 

  2. M. Muneeswaran, N.V. Giridharan, J. Appl. Phys. 115, 214109 (2014)

    Article  Google Scholar 

  3. A. Singh, V. Pandey, R.K. Kotnala, D. Pandey, Phys. Rev. Lett. 101, 247602 (2008)

    Article  Google Scholar 

  4. S. Zhang, L. Wang, Y. Chen, D. Wang, Y. Yao, Y. Ma, J. Appl. Phys. 111, 074105 (2012)

    Article  Google Scholar 

  5. G. Catalan, J.F. Scott, Adv. Mater. 21, 2463–2485 (2009)

    Article  Google Scholar 

  6. X. Yuan, L. Shi, J. Zhao, S. Zhou, Y. Li, C. Xie, J. Guo, J. Alloys Comp. 708, 93–98 (2017)

    Article  Google Scholar 

  7. J. Liu, M. Li, L. Pei, J. Wang, Z. Hu, X. Wang, X. Zhao, EPL Europhys. Lett. 89, 57004 (2010)

    Article  Google Scholar 

  8. S.V. Vijayasundaram, G. Suresh, R.A. Mondal, R. Kanagadurai, J. Alloys Comp. 658, 726–731 (2016)

    Article  Google Scholar 

  9. K. Chakrabarti, K. Das, B. Sarkar, S.K. De, J. Appl. Phys. 110, 103905 (2011)

    Article  Google Scholar 

  10. R.Q. Guo, L. Fang, W. Dong, F.G. Zheng, M.R. Shen, J. Phys. Chem. C 114, 21390–21396 (2010)

    Article  Google Scholar 

  11. M. Muneeswaran, R. Dhanalakshmi, N.V. Giridharan, J. Mater. Sci.: Mater. Electron. 26, 3827–3839 (2015)

    Google Scholar 

  12. C.H. Yang, J. Seidel, S.Y. Kim, P.B. Rossen, P. Yu, M. Gajek, Y.H. Chu, L.W. Martin, M.B. Holcomb, Q. He, P. Maksymovych, N. Balke, S.V. Kalinin, A.P. Baddorf, S.R. Basu, M.L. Scullin, R. Ramesh, Nat. Mater. 8, 485 (2009)

    Article  Google Scholar 

  13. S. Hussain, S.K. Hasanain, G.H. Jaffari, N.Z. Ali, M. Siddique, S.I. Shah, J. Alloys Comp. 622, 8–16 (2015)

    Article  Google Scholar 

  14. R. Mazumder, A. Sen, J. Alloys Comp. 475, 577–580 (2009)

    Article  Google Scholar 

  15. D.H. Wang, W.C. Goh, M. Ning, C.K. Ong, Appl. Phys. Lett. 88, 212907 (2006)

    Article  Google Scholar 

  16. B. Bhushan, A. Basumallick, N.Y. Vasanthacharya, S. Kumar, D. Das, Solid State Sci. 12, 1063–1069 (2010)

    Article  Google Scholar 

  17. A.K. Ghosh, H. Kevin, B. Chatterjee, G.D. Dwivedi, A. Barman, H.D. Yang, S. Chatterjee, Solid State Comm. 152, 557–560 (2012)

    Article  Google Scholar 

  18. G.F. Cheng, Y.H. Huang, J.J. Ge, B. Lv, X.S. Wu, J. Appl. Phys. 111, 07C707 (2012)

    Article  Google Scholar 

  19. F.A. Kroger, H.J. Vink, in Solid State Physics, ed. by F. Seitz, D. Turnbull (Academic Press, New York, 1956), p. 307

    Google Scholar 

  20. F.A. Kröger, H.J. Vink, Solid State Phys. 3, 307–435 (1956)

    Article  Google Scholar 

  21. N. Ilic, J.D. Bobica, B.S. Stojadinovic, A.S. Dzunuzovic, M.M.V. Petrovi, Z.D.D. Mitrovic, B.D. Stojanovic, Mater Res Bull. 77, 60–69 (2016)

    Article  Google Scholar 

  22. A.F. Hegab, I.S. Ahmed Farag, A.M. Shabiny, A.M. Nassaar, A.A. Ramadan, A.M. Moustafa, J. Mater. Sci.: Mater. Electron. 28, 14460–14470 (2017)

    Google Scholar 

  23. M.V.S. Rezende, P.J.R. Montes, F.M.S. Soares, C. Santosc, M.E.G. Valerio, J. Synchrotron Rad. 21, 143–148 (2014)

    Article  Google Scholar 

  24. N. Yang, A. Belianinov, E. Strelcov, A. Tebano, V. Foglietti, D.D. Castro, C. Schlueter, T.L. Lee, A.P. Baddorf, N. Balke, S. Jesse, S.V. Kalinin, G. Balestrino, C. Aruta, ACS Nano. 8, 12494–12501 (2014)

    Article  Google Scholar 

  25. S. Kazhugasalamoorthy, P. Jegatheesan, R. Mohandoss, N.V. Giridharan, B. Karthikeyan, R.J. Joseyphus, S. Dhanuskodi, J. Alloys Comp. 493, 569–572 (2010)

    Article  Google Scholar 

  26. S.M. Selbach, M.A. Einarsrud, T. Grande, Structure and properties of multiferroic oxygen hyper stoichiometric BiFe1 – xMnxO3+d. Chem. Mater. 21, 169 (2009)

    Article  Google Scholar 

  27. J.S. Lee, R.J. De Angelis, Nanostruct. Mater. 7, 805–812 (1996)

    Article  Google Scholar 

  28. L. Xiaochi, W. Bian, Y. Li, H. Zhu, Z. Fu, Q. Zhang, J. Am. Ceram. Soc. 101, 1646–1654 (2018)

    Article  Google Scholar 

  29. L. Xiaochi, W. Bian, C. Min, Z. Fu, Q. Zhang, H. Zhu, Ceram. Int. 44, 10028–10034 (2018)

    Article  Google Scholar 

  30. M. Muneeswaran, B.C. Choi, S.H. Chang, J.H. Jung, Ceram. Int. 43, 13696–13701 (2017)

    Article  Google Scholar 

  31. C. Anthonyraj, M. Muneeswaran, S. Gokul Raj, N.V. Giridharan, V. Sivakumar, G. Senguttuvan, J. Mater. Sci.: Mater. Electron. 26, 49–58 (2015)

    Google Scholar 

  32. M.K. Singh, S. Ryu, H.M. Jang, Phys. Rev. B 72, 132101 (2005)

    Article  Google Scholar 

  33. M. Muneeswaran, P. Jegatheesan, M. Gopiraman, I.S. Kim, N.V. Giridharan, Appl. Phys. A 114, 853–859 (2014)

    Article  Google Scholar 

  34. X. Qi, J. Dho, R. Tomov, M. Blamire, J. MacManus-Driscoll, Appl. Phys. Lett. 86, 062903 (2005)

    Article  Google Scholar 

  35. B. Yu, M. Li, Z. Hu, L. Pei, D. Guo, X. Zhao, S. Dong, Appl. Phys. Lett. 93, 182909 (2008)

    Article  Google Scholar 

  36. A. Sathiya Priya, I.B. Shameem Banu, S. Anwar, J. Magn. Magn. Mater. 401, 333–338 (2016)

    Article  Google Scholar 

  37. D. Lebeugle, D. Colson, A. Forget, M. Viret, A.M. Bataille, A. Gukasov, Phys. Rev. Lett. 100, 227602 (2008)

    Article  Google Scholar 

  38. C. Ederer, N.A. Spaldin, Phys. Rev. B 71, 060401 (2005) R)

    Article  Google Scholar 

  39. B. Wang, S. Wang, L. Gong, Z. Zhou, Ceram. Int. 38, 6643 (2012)

    Article  Google Scholar 

  40. B. Ruette, S. Zvyagin, A.P. Pyatakov, A. Bush, J.F. Li, V.I. Belotelov, A.K. Zvezdin, D. Viehland, Phys. Rev. B 69, 064114 (2004)

    Article  Google Scholar 

  41. J. Rani, K.L. Yadav, S. Prakash, Mater. Res. Bull. 60, 367–375 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT and Future Planning (NRF-2018R1A2B6005179). The [Bi0.95−xDy0.05SrxFeO3 (x = 0.00, 0.10, and 0.20)] ceramics were supplied by the Functional Phosphor Bank at Pukyong National University, South Korea.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jae-Won Jang or Jung Hyun Jeong.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muneeswaran, M., Jang, JW., Jeong, J.H. et al. Effect of dopant-induced defects on structural, electrical, and enhanced ferromagnetism and magnetoelectric properties of Dy and Sr co-doped BiFeO3. J Mater Sci: Mater Electron 30, 7359–7366 (2019). https://doi.org/10.1007/s10854-019-01048-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01048-y

Navigation