Skip to main content

Advertisement

Log in

Oxygen vacancies in concave cubes Cu2O-reduced graphene oxide heterojunction with enhanced photocatalytic H2 production

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

A novel composite heterojunction based on concave cubes Cu2O-reduced graphene oxide (Cu2O-RGO) was synthesized via one-pot hydrothermal method. The anionic surfactant dioctyl sulfosuccinate sodium salt (AOT) can act as the soft template to build the novel Cu2O-based microstructure. The ascorbic acid serves as reductant and etching agent in the Cu2O growing process. The facet etching of Cu2O and reduction of GO can take place simultaneously in the reaction system. The concave cubes Cu2O with average edge length of ~ 1.55 µm were well-dispersed on the surface of RGO. The Cu2O-RGO (2 wt%) heterojunction exhibited superior photocatalytic performance and recyclability with the highest amount of H2 yields of 64.3 µmol/g, which was fivefold more than the pure Cu2O (12.8 µmol/g). The enhanced photocatalytic performances were attributed to the oxygen vacancies in Cu2O and a flexible conducting channel supported by RGO. Furthermore, the synergistic effect of Cu2O and graphene caused broader absorption in visible light region and lower recombination of photogenerated electron–hole pairs. It is believed that the Cu2O-RGO heterojunction could provide an alternative method to design excellent photocatalysts for energy application.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Y. Chen, S. Zhao, X. Wang, Q. Peng, R. Lin, Y. Wang, R. Shen, X. Cao, L. Zhang, G. Zhou, J. Li, A. Xia, Y. Li, Synergetic integration of Cu1.94S-ZnxCd1–xS heteronanorods for enhanced visible-light-driven photocatalytic hydrogen production. J. Am. Chem. Soc. 138, 4286–4289 (2016)

    Article  Google Scholar 

  2. Y. Zhu, A. Marianov, H. Xu, C. Lang, Y. Jiang, Bimetallic Ag-Cu supported on graphitic carbon nitride nanotubes for improved visible-light photocatalytic hydrogen production. ACS Appl. Mater. Interfaces 10, 9468–9477 (2018)

    Article  Google Scholar 

  3. S. Martha, D.P. Das, N. Biswal, K.M. Parida, Facile synthesis of visible light responsive V2O5N,S–TiO2 composite photocatalyst: enhanced hydrogen production and phenol degradation. J. Mater. Chem. 22, 10695–10703 (2012)

    Article  Google Scholar 

  4. Y. Huang, C.-F. Yan, C.-Q. Guo, Z.-X. Lu, Y. Shi, Z.-D. Wang, Synthesis of GO-modified Cu2O nanosphere and the photocatalytic mechanism of water splitting for hydrogen production. Int. J. Hydrogen Energy 42, 4007–4016 (2017)

    Article  Google Scholar 

  5. Q. Wei, Y. Wang, H. Qin, J. Wu, Y. Lu, H. Chi, F. Yang, B. Zhou, H. Yu, J. Liu, Construction of rGO wrapping octahedral Ag-Cu2O heterostructure for enhanced visible light photocatalytic activity. Appl. Catal. B 227, 132–144 (2018)

    Article  Google Scholar 

  6. R. Wick, S.D. Tilley, Photovoltaic and photoelectrochemical solar energy conversion with Cu2O. J. Phys. Chem. C 119, 26243–26257 (2015)

    Article  Google Scholar 

  7. Y. Su, H. Guo, Z. Wang, Y. Long, W. Li, Y. Tu, Au@Cu2O core-shell structure for high sensitive non-enzymatic glucose sensor. Sens. Actuators B 255, 2510–2519 (2018)

    Article  Google Scholar 

  8. Y.-T. Xu, Y. Guo, L.-X. Song, K. Zhang, M.M.F. Yuen, J.-B. Xu, X.-Z. Fu, R. Sun, C.-P. Wong, Co-reduction self-assembly of reduced graphene oxide nanosheets coated Cu2O sub-microspheres core-shell composites as lithium ion battery anode materials. Electrochim. Acta 176, 434–441 (2015)

    Article  Google Scholar 

  9. P.D. Tran, S.K. Batabyal, S.S. Pramana, J. Barber, L.H. Wong, S.C. Loo, A cuprous oxide-reduced graphene oxide (Cu2O-rGO) composite photocatalyst for hydrogen generation: employing rGO as an electron acceptor to enhance the photocatalytic activity and stability of Cu2O. Nanoscale 4, 3875–3878 (2012)

    Article  Google Scholar 

  10. S. Wu, G. Fu, W. Lv, J. Wei, W. Chen, H. Yi, M. Gu, X. Bai, L. Zhu, C. Tan, Y. Liang, G. Zhu, J. He, X. Wang, K.H.L. Zhang, J. Xiong, W. He, A single-step hydrothermal route to 3D hierarchical Cu2O/CuO/rGO nanosheets as high-performance anode of lithium-ion batteries. Small 14, 1702667–1702674 (2018)

    Article  Google Scholar 

  11. W. Zhang, Y. Ma, Z. Yang, X. Tang, X. Li, G. He, Y. Cheng, Z. Fang, R. He, Y. Zhang, Analysis of synergistic effect between graphene and octahedral cuprous oxide in cuprous oxide-graphene composites and their photocatalytic application. J. Alloys Compd. 712, 704–713 (2017)

    Article  Google Scholar 

  12. X. Yan, R. Xu, J. Guo, X. Cai, D. Chen, L. Huang, Y. Xiong, S. Tan, Enhanced photocatalytic activity of Cu2O/g-C3N4 heterojunction coupled with reduced graphene oxide three-dimensional aerogel photocatalysis. Mater. Res. Bull. 96, 18–27 (2017)

    Article  Google Scholar 

  13. Z. Zhang, S. Zhai, M. Wang, H. Ji, L. He, C. Ye, C. Wang, S. Fang, H. Zhang, Photocatalytic degradation of rhodamine B by using a nanocomposite of cuprous oxide, three-dimensional reduced graphene oxide, and nanochitosan prepared via one-pot synthesis. J. Alloys Compd. 659, 101–111 (2016)

    Article  Google Scholar 

  14. A.A. Dubale, W.-N. Su, A.G. Tamirat, C.-J. Pan, B.A. Aragaw, H.-M. Chen, C.-H. Chen, B.-J. Hwang, The synergetic effect of graphene on Cu2O nanowire arrays as a highly efficient hydrogen evolution photocathode in water splitting. J. Mater. Chem. A 2, 18383–18397 (2014)

    Article  Google Scholar 

  15. H. Zhang, F. Liu, B. Li, J. Xu, X. Zhao, X. Liu, Microwave-assisted synthesis of Cu2O microcrystals with systematic shape evolution from octahedral to cubic and their comparative photocatalytic activities. RSC Adv. 4, 38059–38063 (2014)

    Article  Google Scholar 

  16. L. Sun, X. Wu, M. Meng, X. Zhu, P.K. Chu, Enhanced photodegradation of methyl orange synergistically by microcrystal facet cutting and flexible electrically-conducting channels. J. Phys. Chem. C 118, 28063–28068 (2014)

    Article  Google Scholar 

  17. F. Wang, Y. Zhao, F. Feng, C. Li, F. Cao, W. Shangguan, Fabrication and shape evolution of petal-like Cu2O nanocrystal toward enhanced photoactivity and stability for hydrogen generation under visible light irradiation. J. Alloys Compd. 688, 632–638 (2016)

    Article  Google Scholar 

  18. H. Huo, C. Guo, G. Li, X. Han, C. Xu, Reticular-vein-like Cu@Cu2O/reduced graphene oxide nanocomposites for a non-enzymatic glucose sensor. RSC Adv. 4, 20459–20465 (2014)

    Article  Google Scholar 

  19. M. Mousavi-Kamazani, Z. Zarghami, R. Rahmatolahzadeh, M. Ramezani, Solvent-free synthesis of Cu-Cu2O nanocomposites via green thermal decomposition route using novel precursor and investigation of its photocatalytic activity. Adv. Powder Technol. 28, 2078–2086 (2017)

    Article  Google Scholar 

  20. Q. Zhang, L. Huang, S. Kang, C. Yin, Z. Ma, L. Cui, Y. Wang, CuO/Cu2O nanowire arrays grafted by reduced graphene oxide: synthesis, characterization, and application in photocatalytic reduction of CO2. RSC Adv. 7, 43642–43647 (2017)

    Article  Google Scholar 

  21. D.C.T. Nguyen, K.Y. Cho, W.-C. Oh, Synthesis of mesoporous SiO2/Cu2O–graphene nanocomposites and their highly efficient photocatalytic performance for dye pollutants. RSC Adv. 7, 29284–29294 (2017)

    Article  Google Scholar 

  22. L. Le, Y. Wu, Z. Zhou, H. Wang, R. Xiong, J. Shi, Cu2O clusters decorated on flower-like TiO2 nanorod array film for enhanced hydrogen production under solar light irradiation. J. Photochem. Photobiol. A 351, 78–86 (2018)

    Article  Google Scholar 

  23. Z. Li, Y. Pi, D. Xu, Y. Li, W. Peng, G. Zhang, F. Zhang, X. Fan, Utilization of MoS2 and graphene to enhance the photocatalytic activity of Cu2O for oxidative C-C bond formation. Appl. Catal. B 213, 1–8 (2017)

    Article  Google Scholar 

  24. L. Zhang, D. Jing, L. Guo, X. Yao, In situ photochemical synthesis of Zn-doped Cu2O hollow microcubes for high efficient photocatalytic H2 production. ACS Sustain Chem. Eng. 2, 1446–1452 (2014)

    Article  Google Scholar 

  25. L. Liu, Y. Qi, J. Hu, Y. Liang, W. Cui, Efficient visible-light photocatalytic hydrogen evolution and enhanced photostability of core@shell Cu2O@g-C3N4 octahedra. Appl. Surf. Sci. 351, 1146–1154 (2015)

    Article  Google Scholar 

  26. D. Jiang, Y. Zhang, X. Li, Folded-up thin carbon nanosheets grown on Cu2O cubes for improving photocatalytic activity. Nanoscale 9, 12348–12352 (2017)

    Article  Google Scholar 

  27. Y.-C. Pu, H.-Y. Chou, W.-S. Kuo, K.-H. Wei, Y.-J. Hsu, Interfacial charge carrier dynamics of cuprous oxide-reduced graphene oxide (Cu2O-rGO) nanoheterostructures and their related visible-light-driven photocatalysis. Appl. Catal. B 204, 21–32 (2017)

    Article  Google Scholar 

  28. D. Zhang, D. Wei, Z. Cui, S. Wang, S. Yang, M. Cao, C. Hu, Improving water splitting performance of Cu2O through a synergistic “two-way transfer” process of Cu and graphene. Phys. Chem. Chem. Phys. 16, 25531–25536 (2014)

    Article  Google Scholar 

  29. M. Liu, R. Liu, W. Chen, Graphene wrapped Cu2O nanocubes: non-enzymatic electrochemical sensors for the detection of glucose and hydrogen peroxide with enhanced stability. Biosens. Bioelectron. 45, 206–212 (2013)

    Article  Google Scholar 

  30. F. Han, H. Li, J. Yang, X. Cai, L. Fu, One-pot synthesis of cuprous oxide-reduced graphene oxide nanocomposite with enhanced photocatalytic and electrocatalytic performance. Phys. E 77, 122–126 (2016)

    Article  Google Scholar 

  31. J. Choi, H. Oh, S.-W. Han, S. Ahn, J. Noh, J.B. Park, Preparation and characterization of graphene oxide supported Cu, Cu2O, and CuO nanocomposites and their high photocatalytic activity for organic dye molecule. Curr. Appl. Phys. 17, 137–145 (2017)

    Article  Google Scholar 

  32. I. Roy, A. Bhattacharyya, G. Sarkar, N.R. Saha, D. Rana, P.P. Ghosh, M. Palit, A.R. Das, D. Chattopadhyay, In situ synthesis of a reduced graphene oxide/cuprous oxide nanocomposite: a reusable catalyst. RSC Adv. 4, 52044–52052 (2014)

    Article  Google Scholar 

  33. L. Sun, G. Wang, R. Hao, D. Han, S. Cao, Solvothermal fabrication and enhanced visible light photocatalytic activity of Cu2O-reduced graphene oxide composite microspheres for photodegradation of Rhodamine B. Appl. Surf. Sci. 358, 91–99 (2015)

    Article  Google Scholar 

  34. D. Xu, L. Li, R. He, L. Qi, L. Zhang, B. Cheng, Noble metal-free RGO/TiO2 composite nanofiber with enhanced photocatalytic H2-production performance. Appl. Surf. Sci. 434, 620–625 (2018)

    Article  Google Scholar 

  35. Y. Lei, C. Yang, J. Hou, F. Wang, S. Mina, X. Ma, Z. Jina, J. Xua, G. Lu, K.-W. Huang, Strongly coupled CdS/graphene quantum dots nanohybrids for highly efficient photocatalytic hydrogen evolution Unraveling the essentialroles of graphene quantum dots. Appl. Catal. B 216, 59–69 (2017)

    Article  Google Scholar 

  36. M. Singh, D. Jampaiah, A.E. Kandjani, Y.M. Sabri, E. Della Gaspera, P. Reineck, M. Judd, J. Langley, N. Cox, J. van Embden, E.L.H. Mayes, B.C. Gibson, S.K. Bhargava, R. Ramanathan, V. Bansal, Oxygen-deficient photostable Cu2O for enhanced visible light photocatalytic activity. Nanoscale 10, 6039–6050 (2018)

    Article  Google Scholar 

  37. X. Qin, F. He, L. Chen, Y. Meng, J. Liu, N. Zhao, Y. Huang, Oxygen-vacancy modified TiO2 nanoparticles as enhanced visible-light driven photocatalysts by wrapping and chemically bonding with graphite-like carbon. RSC Adv. 6, 10887–10894 (2016)

    Article  Google Scholar 

  38. J. Li, X. Xu, X. Liu, C. Yu, D. Yan, Z. Sun, L. Pan, Sn doped TiO2 nanotube with oxygen vacancy for highly efficient visible light photocatalysis. J. Alloys Compd. 679, 454–462 (2016)

    Article  Google Scholar 

  39. J. Li, M. Zhang, Z. Guan, Q. Li, C. He, J. Yang, Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2. Appl. Catal. B 206, 300–307 (2017)

    Article  Google Scholar 

  40. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958)

    Article  Google Scholar 

  41. A.M. Abdelkader, C.V. s, A.J. Cooper, I.A. Kinloch, R.A.W. Dryfe, Alkali reduction of graphene oxide in molten halide salts: production of corrugated graphene derivatives for high-performance supercapacitors. ACS Nano 8, 11225–11233 (2014)

    Article  Google Scholar 

  42. Y. Guo, H. Wang, X. Ma, J. Jin, W. Ji, X. Wang, W. Song, B. Zhao, C. He, Fabrication of Ag-Cu2O/reduced graphene oxide nanocomposites as surface-enhanced raman scattering substrates for in situ monitoring of peroxidase-like catalytic reaction and biosensing. ACS Appl. Mater. Interfaces 9, 19074–19081 (2017)

    Article  Google Scholar 

  43. H. Meng, W. Yang, K. Ding, L. Feng, Y. Guan, Cu2O nanorods modified by reduced graphene oxide for NH3 sensing at room temperature. J. Mater. Chem. A 3, 1174–1181 (2015)

    Article  Google Scholar 

  44. H. Gao, J. Zhang, M. Li, K. Liu, D. Guo, Y. Zhang, Evaluating the electric property of different crystal faces and enhancing the Raman scattering of Cu2O microcrystal by depositing Ag on the surface. Curr. Appl. Phys. 13, 935–939 (2013)

    Article  Google Scholar 

  45. Y. Mao, J. He, X. Sun, W. Li, X. Lu, J. Gan, Z. Liu, L. Gong, J. Chen, P. Liu, Y. Tong, Electrochemical synthesis of hierarchical Cu2O stars with enhanced photoelectrochemical properties. Electrochim. Acta 62, 1–7 (2012)

    Article  Google Scholar 

  46. G. Wang, X. Shen, J. Yao, J. Park, Graphene nanosheets for enhanced lithium storage in lithium ion batteries. Carbon 47, 2049–2053 (2009)

    Article  Google Scholar 

  47. Z.L. Wang, Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 104, 1153–1175 (2000)

    Article  Google Scholar 

  48. M. Samadi, H.A. Shivaee, A. Pourjavadi, A.Z. Moshfegh, Synergism of oxygen vacancy and carbonaceous species on enhanced photocatalytic activity of electrospun ZnO-carbon nanofibers: Charge carrier scavengers mechanism. Appl. Catal. A 466, 153–160 (2013)

    Article  Google Scholar 

  49. H. Li, Y. Lei, Y. Huang, Y. Fang, Y. Xu, L. Zhu, X. Li, Photocatalytic reduction of carbon dioxide to methanol by Cu2O/SiC nanocrystallite under visible light irradiation. J. Nat. Gas Chem. 20, 145–150 (2011)

    Article  Google Scholar 

  50. K. Wang, X. Dong, C. Zhao, X. Qian, Y. Xu, Facile synthesis of Cu2O/CuO/RGO nanocomposite and its superior cyclability in supercapacitor. Electrochim. Acta 152, 433–442 (2015)

    Article  Google Scholar 

  51. Y. Hou, X. Li, Q. Zhao, G. Chen, ZnFe2O4 multi-porous microbricks/graphene hybrid photocatalyst: Facile synthesis, improved activity and photocatalytic mechanism, Appl. Catal. B 142, 80–88(2013)

    Article  Google Scholar 

  52. J.J. Teo, Y. Chang, H.C. Zeng, Fabrications of hollow nanocubes of Cu2O and Cu via reductive self-assembly of CuO nanocrystals. Langmuir 22, 7369–7377 (2006)

    Article  Google Scholar 

  53. C. Wan, Y. Jiao, J. Li, Multilayer core–shell structured composite paper electrode consisting of copper, cuprous oxide and graphite assembled on cellulose fibers for asymmetric supercapacitors. J. Power Sources 361, 122–132 (2017)

    Article  Google Scholar 

  54. C. Wang, D. Wu, P. Wang, Y. Ao, J. Hou, J. Qian, Effect of oxygen vacancy on enhanced photocatalytic activity of reduced ZnO nanorod arrays. Appl. Surf. Sci. 325, 112–116 (2015)

    Article  Google Scholar 

  55. J. Liu, J. Ke, D. Li, H. Sun, P. Liang, X. Duan, W. Tian, M.O. Tade, S. Liu, S. Wang, Oxygen vacancies in shape controlled Cu2O/reduced graphene oxide/In2O3 hybrid for promoted photocatalytic water oxidation and degradation of environmental pollutants. ACS Appl. Mater. Interfaces 9, 11678–11688 (2017)

    Article  Google Scholar 

  56. Z. Wang, T. Zhang, T. Han, T. Fei, S. Liu, G. Lu, Oxygen vacancy engineering for enhanced sensing performances: A case of SnO2 nanoparticles-reduced graphene oxide hybrids for ultrasensitive ppb-level room-temperature NO2 sensing. Sens. Actuators B 266, 812–822 (2018)

    Article  Google Scholar 

  57. D. Li, F. Shi, D. Jiang, M. Chen, W. Shi, CdIn2S4/g-C3N4 heterojunction photocatalysts: enhanced photocatalytic performance and charge transfer mechanism. RSC Adv. 7, 231–237 (2017)

    Article  Google Scholar 

  58. A. Chowdhury, P.K. Bijalwan, R.K. Sahu, Investigations on the role of alkali to obtain modulated defect concentrations for Cu2O thin films. Appl. Surf. Sci. 289, 430–436 (2014)

    Article  Google Scholar 

  59. Y. Liu, H. Niu, W. Gu, X. Cai, B. Mao, D. Li, W. Shi, In-situ construction of hierarchical CdS/MoS2 microboxes for enhanced visible-light photocatalytic H2 production. Chem. Eng. J. 339, 117–124 (2018)

    Article  Google Scholar 

  60. F. Guo, W. Shi, C. Zhu, H. Li, Z. Kang, CoO and g-C3N4 complement each other for highly efficient overall water splitting under visible light. Appl. Catal. B 226, 412–420 (2018)

    Article  Google Scholar 

  61. H. Shi, K. Yu, Y. Wang, Q. Wang, Z. Zhu, Shape evolution, photoluminescence and degradation properties of novel Cu2O micro/nanostructures. Appl. Phys. A 108, 709–717 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to NSFC (21771166, U1704256, 21301158), Center Plain Science and Technology Innovation Talents (194200510013), and Ministry of Science and Technology of China (2017YFA0204903).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yong-Hui Zhang, Jun-Li Chen or Hao-Li Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3564 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, YH., Cai, XL., Guo, DY. et al. Oxygen vacancies in concave cubes Cu2O-reduced graphene oxide heterojunction with enhanced photocatalytic H2 production. J Mater Sci: Mater Electron 30, 7182–7193 (2019). https://doi.org/10.1007/s10854-019-01036-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-01036-2

Navigation