Skip to main content
Log in

Investigation on the impedance spectroscopy and electrical conduction mechanism in \(\hbox {SrTi}_{1-x}\hbox {V}_{x}\hbox {O}_3\) (\(x = 0.00 \le x \le 0.15\)) ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, vanadium doped \(\hbox {SrTiO}_3\) (\(\hbox {SrTi}_{1-x}\hbox {V}_x\hbox {O}_3\), \(x = 0.00 \le x \le 0.15\)) ceramics are prepared via solid state reaction method. All the prepared samples are characterized by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The Rietveld refinement performed on the XRD pattern confirms the cubic crystalline structure with \(Pm\overline{3}m\) space group for all the samples. The grain size significantly increases by vanadium doping. The Nyquist analysis, conductivity behavior and scaling behavior of the electrical impedance (\(Z''/Z''_{max}\)) and modulus (\(M''/M''_{max}\)) of \(\hbox {SrTi}_{1-x}\hbox {V}_x\hbox {O}_3\) ceramics are investigated at different temperatures (400–\(500\ ^{\circ }\hbox {C}\)) over a wide range of frequency (100 Hz–5 MHz). The results of Nyquist plots reveal that the electrical behavior of \(\hbox {SrTi}_{1-x}\hbox {V}_x\hbox {O}_3\) ceramics are due to the contribution of both the grain and grain boundary. The negative temperature of coefficient of resistance (NTCR) behavior is also confirmed in all the investigated samples. Modulus analysis confirms that the relaxation process occurring in all the samples are of non-Debye type. The observed relaxation frequencies follow the Arrehenius equation. Activation energies are calculated for all the samples which indicate that the phenomena of electrical transport is a thermally activated process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Chen, A.I. Kingon, H. Al-Shreef, Ferroelectrics 151, 133 (1994)

    Article  Google Scholar 

  2. A. Garg, T.C. Goel, Mater. Sci. Eng. B 60, 128 (1999)

    Article  Google Scholar 

  3. D. La-Orauttapong, B. Noheda, Z.G. Ye, P.M. Gehring, J. Toulouse, D.E. Cox, G. Shirane, Phys. Rev. B 65, 144101 (2002)

    Article  Google Scholar 

  4. F. Li, S. Zhang, Z. Xu, X. Wei, J. Luo, T.R. Shrout, J. Appl. Phys. 108, 034106 (2010)

    Article  Google Scholar 

  5. C.C. Wang, C.M. Lei, G.J. Wang, X.H. Sun, T. Li, S.G. Huang, H. Wang, Y.D. Li, J. Appl. Phys. 113, 094103 (2013)

    Article  Google Scholar 

  6. J.G. Bednorz, K.A. Muller, Phys. Rev. Lett. 52, 2289 (1984)

    Article  Google Scholar 

  7. O. Tikhomirov, H. Jiang, J. Levy, Phys. Rev. Lett. 89, 147601 (2002)

    Article  Google Scholar 

  8. Z. Wang, M. Cao, Z. Yao, G. Li, Z. Song, W. Hu, H. Hao, H. Liu, Z. Yu, Ceram. Int. 40, 929 (2014)

    Article  Google Scholar 

  9. M. Vollman, R. Waser, J. Am. Ceram. Soc. 77, 235 (1994)

    Article  Google Scholar 

  10. D.E. Kotecki, J.D. Baniecki, H. Shen, R.B. Laibowitz, K.L. Saenger, J.J. Lian, T.M. Shaw, S.D. Athavale, C. Cabral, P.R. Duncombe, M. Gutsche, J. Res. Dev. 43, 367 (1999)

    Google Scholar 

  11. X. Zhou, O.T. Sørensen, Y. Xu, Sens. Actuators B 41, 177 (1997)

    Article  Google Scholar 

  12. N.G. Eror, U. Balachandran, J. Solid State Chem. 40, 85 (1981)

    Article  Google Scholar 

  13. X. Li, H. Zhao, W. Shen, F. Gao, X. Huang, Y. Li, Z. Zhu, J. Power Sources 166, 47 (2007)

    Article  Google Scholar 

  14. P. Blennow, A. Hagen, K.K. Hansen, L.R. Wallenberg, M. Mogensen, Solid State Ionics 179, 2047 (2008)

    Article  Google Scholar 

  15. S.P. Mantry, A. Yadav, M. Fahad, P.M. Sarun, Mater. Res. Express 5, 036303 (2018)

    Article  Google Scholar 

  16. R. Moos, K.H. Hardtl, J. Am. Ceram. Soc. 80, 2549 (1997)

    Article  Google Scholar 

  17. I. Burn, S. Neirman, J. Mater. Sci. 17, 3510 (1982)

    Article  Google Scholar 

  18. T.T. Khan, I. Mahmud, S.C. Ur, Korean J. Mater. Res. 27, 416 (2017)

    Article  Google Scholar 

  19. K. Hong, S.H. Kim, Y.H. Heo, Y.U. Kwon, Solid State Commun. 123, 305 (2002)

    Article  Google Scholar 

  20. J.S. Hansdah, P.M. Sarun, J. Appl. Phys. 117, 113903 (2015)

    Article  Google Scholar 

  21. W. Cai, C. Fu, Z. Lin, X. Deng, Ceram. Int. 37, 3643 (2011)

    Article  Google Scholar 

  22. A. Shukla, R. Choudhary, A. Thakur, D. Pradhan, Physica B 405, 99 (2010)

    Article  Google Scholar 

  23. T.D. Rao, T. Karthik, A. Srinivas, S. Asthana, Solid State Commun. 152, 2071 (2012)

    Article  Google Scholar 

  24. A.M.M. Farea, S. Kumar, A.Y.K.M. Batoo, Physica B 403, 684 (2008)

    Article  Google Scholar 

  25. J. Bisquert, G. Garcia-Belmonte, P. Bueno, E. Longo, L.O.S. Bulhoes, J. Electroanal. Chem. 452, 229 (1998)

    Article  Google Scholar 

  26. B.H. Venkataraman, K.B.R. Varma, J. Mater. Sci. 16, 335 (2005)

    Google Scholar 

  27. T. Mondal, S. Das, T.P. Sinha, P.M. Sarun, Mater. Sci. 36, 112 (2018)

    Google Scholar 

  28. S.N. Das, S.K. Pradhan, S. Bhuyan, R.N.P. Choudhary, J. Mater. Sci. 28, 18913 (2017)

    Google Scholar 

  29. J. Liu, C.G. Duan, W.N. Mei, R.W. Smith, J.R. Hardy, J. Appl. Phys. 98, 093703 (2005)

    Article  Google Scholar 

  30. S. Beg, S. Haneef, N.A. Al-Areqi, Phase Transit. 83, 1114 (2010)

    Article  Google Scholar 

  31. A. Singh, R. Chatterjee, S.K. Mishra, P.S.R. Krishna, S.L. Chaplot, J. Appl. Phys. 111, 014113 (2012)

    Article  Google Scholar 

  32. B. Deka, S. Ravi, J. Alloys Compd. 720, 589 (2017)

    Article  Google Scholar 

  33. P. Choudhary, D. Varshney, Solid State Commun. 271, 89 (2018)

    Article  Google Scholar 

  34. B. Deka, S. Ravi, D. Pamu, Ceram. Int. 43, 10468 (2017)

    Article  Google Scholar 

  35. B. Behera, P. Nayak, R.N.P. Choudhary, Mater. Chem. Phys. 106, 193 (2007)

    Article  Google Scholar 

  36. A. Yadav, S.P. Mantry, M. Fahad, P.M. Sarun, Physica B 537, 290 (2018)

    Article  Google Scholar 

  37. T. Mondal, S. Das, T. Badapanda, T.P. Sinha, P.M. Sarun, Physica B 508, 124 (2017)

    Article  Google Scholar 

  38. H. Trabelsi, M. Bejar, E. Dhahri, M. Sajieddine, K. Khirouni, P.R. Prezas, B.M.G. Melo, M.A. Valente, M.P.F. Graça, J. Alloys Compd. 723, 894 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

Snigdha Paramita Mantry acknowledges Indian Institute of Technology (Indian School of Mines), Dhanbad, Jharkhand, India for the Senior Research Fellowship (SRF). Authors also acknowledge Dr. Dinesh Topwal, Institute of Physics (IOP), Bhubaneswar, Odisha, India for extending the XRD facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P. M. Sarun.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mantry, S.P., Sarun, P.M. Investigation on the impedance spectroscopy and electrical conduction mechanism in \(\hbox {SrTi}_{1-x}\hbox {V}_{x}\hbox {O}_3\) (\(x = 0.00 \le x \le 0.15\)) ceramics. J Mater Sci: Mater Electron 30, 6795–6805 (2019). https://doi.org/10.1007/s10854-019-00991-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00991-0

Navigation