Skip to main content

Advertisement

Log in

Enhanced photocatalytic degradation of methyl orange using Ag/Sn-doped CeO2 nanocomposite

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Cerium oxide (CeO2) has attracted much attention in recent years because of its unique physiochemical properties in photocatalysis. Herein, pure CeO2 and Sn-doped CeO2 (Sn–CO) nanoparticles were synthesized by a simple hydrothermal method. In addition, the Sn-doped CeO2 sample was composited with Ag nanoparticles by a chemical precipitation method to prepare Ag/Sn–CO nanocomposite. The prepared samples were characterized by X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy dispersive X-ray spectroscopy (EDS) and UV-visible absorption spectroscopy. Furthermore, the photocatalytic activity of the as-prepared cerium oxide-based samples was evaluated using the degradation of methyl orange (MO) under ultraviolet and visible light irradiation. It was found that photocatalytic activity of the pure CeO2 nanoparticles was enhanced through Sn doping and surface sensitization with Ag. The enhanced photocatalytic performance of the Sn-doped CeO2 sample can be ascribed mainly to a decrease in its band gap energy. Moreover, the improved photocatalytic activity of the Ag/Sn–CO nanocomposite compared to that of the Sn–CO sample is due to its localized surface plasmon resonance (LSPR) effect. The Ag/Sn–CO sample exhibited an efficient photocatalytic characteristic for degrading MO under visible light irradiation with a high degradation rate of 99% after 45 min. The responsible mechanism for the enhancement of photocatalytic activity of cerium oxide was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.B. Khan, M. Faisal, M.M. Rahman, A. Jamal, Sci. Total Environ. 409, 2987 (2011)

    Article  Google Scholar 

  2. J. Qin, J. Huo, P. Zhang, J. Zeng, T. Wang, H. Zeng, Nanoscale 8, 2249 (2016)

    Article  Google Scholar 

  3. D. Channei, B. Inceesungvorn, N. Wetchakun, S. Ukritnukun, A. Nattestad, J. Chen, S. Phanichphant, Sci. Rep. 4, 5757 (2014)

    Article  Google Scholar 

  4. N. Wetchakun, S. Chaiwichain, B. Inceesungvorn, K. Pingmuang, S. Phanichphant, A.I. Minett, J. Chen, ACS Appl. Mater. Interfaces 4, 3718 (2012)

    Article  Google Scholar 

  5. M.S. Morassaei, S.Z. Ajabshir, M. Salavati-Niasari, J. Mater. Sci. 27, 11698 (2016)

    Google Scholar 

  6. F. Beshkar, S. Zinatloo-Ajabshir, S. Bagheri, M. Salavati-Niasari, Plos ONE 12, 6 (2017)

    Article  Google Scholar 

  7. S. Ghosh, S. Sarkar, B.K. Das, D. Sen, M. Samanta, K.K. Chattopadhyay, Phys. Chem. Chem. Phys. 19, 29998 (2017)

    Article  Google Scholar 

  8. S. Zinatloo-Ajabshir, Z. Zinatloo-Ajabshir, M. Salavati-Niasari, S. Bagheri, S.B.A. Hamid, J. Energy Chem. 26, 315 (2017)

    Article  Google Scholar 

  9. R.M. Mohamed, D.L. McKinney, W.M. Sigmund, Mater. Sci. Eng. R 73, 1 (2012)

    Article  Google Scholar 

  10. Y.H. Leung, M.M.N. Yung, A.M.C. Ng, A.P.Y. Ma, S.W.Y. Wong, C.M.N. Chan, Y.H. Ng, A.B. Djurišic, M. Guo, M.T. Wong, F.C.C. Leung, W.K. Chan, K.M.Y. Leung, H.K. Lee, J. Photochem. Photobiol. 145, 48 (2015)

    Article  Google Scholar 

  11. S. Suresh, J. Nanosci. Nanotechnol. 3, 62 (2013)

    Google Scholar 

  12. T.V. Surendra, S.M. Roopan, J. Photochem. Photobiol. 161, 122 (2016)

    Article  Google Scholar 

  13. X.F. Lei, X.X. Xue, H. Yang, Appl. Surf. Sci. 321, 396 (2014)

    Article  Google Scholar 

  14. R. Liu, P. Wang, X. Wang, H. Yu, J. Yu, J. Phys. Chem. C 116, 17721 (2012)

    Article  Google Scholar 

  15. V.D. Binas, K. Sambani, T. Maggos, A. Katsanaki, G. Kiriakidis, Appl. Catal. B 113– 114, 79 (2012)

    Article  Google Scholar 

  16. H.Y. Chen, S. Maiti, D.H. Son, ACS Nano. 6, 583 (2012)

    Article  Google Scholar 

  17. I.R. Vázquez, G.D. Angel, V. Bertin, F. González, A.V. Zavala, A. Arrieta, J.M. Padilla, A. Barrera, E.R. Ramirez, J. Alloys Compd. 643, 144 (2015)

    Article  Google Scholar 

  18. L. Zhang, D. He, P. Jiang, Catal. Commun. 10, 1414 (2009)

    Article  Google Scholar 

  19. S. Demirci, T. Dikici, M. Yurddaskal, S. Gultekin, M. Toparli, E. Celik, Appl. Surf. Sci. 390, 591 (2016)

    Article  Google Scholar 

  20. S.E.H. Yeganeh, M. Kazazi, B.K. Kaleji, S.H. Kazemi, B. Hosseinzadeh, J. Mater. Sci. Mater. Electron. 29, 10841 (2018)

    Article  Google Scholar 

  21. S. Moshtaghi, S. Zinatloo-Ajabshir, M. Salavati-Niasari, J. Mater. Sci. 27, 425 (2016)

    Google Scholar 

  22. H. Li, E. Liu, J. Fan, X. Hu, J. Wan, L. Sun, Y. Hu, ‎J. Opt. Soc. Am. 55, 221 (2016)

    Google Scholar 

  23. E. Liu, L. Kang, Y. Yang, T. Sun, X. Hu, C. Zhu, H. Liu, Q. Wang, X. Li, J. Fan, Nanotechnology. 25, 16 (2014)

    Google Scholar 

  24. B. Sepúlveda, P.C. Angelomé, L.M. Lechuga, L.M. Liz-Marzán, Nano Today. 4, 244 (2009)

    Article  Google Scholar 

  25. J. Kong, C. Song, W. Zhang, Y. Xiong, M. Wan, Y. Wang, Superlattice Microstruct. 109, 579 (2017)

    Article  Google Scholar 

  26. M.J. Islam, D.A. Reddy, J. Choi, T.K. Kim, RSC Adv. 6, 19341 (2016)

    Article  Google Scholar 

  27. V.R. Djokić, A.D. Marinković, O. Ersen, P.S. Uskoković, R.D. Petrović, V.R. Radmilović, D.T. Janaćković, Ceram. Int. 40, 4009 (2014)

    Article  Google Scholar 

  28. W. Zhanga, C. Hua, W. Zhaia, Z. Wanga, Y. Suna, F. Chia, S. Rana, X. Liua, Y. Lva, Mater. Res. Innov. 19, 673 (2016)

    Article  Google Scholar 

  29. L.T.T. Tuyen, D.Q. Khieu, H.T. Long, D.T. Quang, C.T.L. Trang, T.T. Hoa, N.D. Cuong, J. Nanomater. 2016, 7 (2016)

  30. S.A. Ansari, M.M. Khan, M.O. Ansari, S. Kalathil, J. Leea, M.H. Cho, RSC Adv. 4, 16782 (2014)

    Article  Google Scholar 

  31. R.T. Sapkal, S.S. Shinde, T.R. Waghmode, S.P. Govindwar, K.Y. Rajpure, C.H. Bhosale, J. Photochem. Photobiol. 110, 15 (2012)

    Article  Google Scholar 

  32. D. Yin, F. Zhao, L. Zhang, X. Zhang, Y. Liu, T. Zhang, C. Wu, D. Chen, Z. Chen, RSC Adv. 6, 103795 (2016)

    Article  Google Scholar 

  33. Z. Salehi, S. Zinatloo-Ajabshir, M. Salavati-Niasari, RSC Adv. 6, 26895 (2016)

    Article  Google Scholar 

  34. N.S. Arul, D. Mangalaraj, R. Ramachandran, A.N. Grace, J.I. Han, J. Mater. Chem. A 3, 15248 (2015)

    Article  Google Scholar 

  35. Z.M. Yang, G.F. Huang, W.Q. Huang, J.M. Wei, X.G. Yan, Y.Y. Liu, C. Jiao, Z. Wan, A. Pan, J. Mater. Chem. A 2, 1750 (2013)

    Article  Google Scholar 

  36. P. Tamizhdurai, S. Sakthinathan, S.M. Chen, K. Shanthi, S. Sivasanker, P. Sangeetha, Sci. Rep. 7, 46372 (2017)

    Article  Google Scholar 

  37. J.B. Heon, J.H. Son, D.S. Bae, J. Nanoparticle Res. 47, 49 (2017)

    Google Scholar 

  38. S. Zinatloo-Ajabshir, Z. Salehi, M. Salavati-Niasari, J. Alloys Compd. 763, 314 (2018)

    Article  Google Scholar 

  39. Z. Chen, Y. Ding, N. Fang, C. Liu, Mater. Res. 5, 6 (2018)

    Google Scholar 

  40. B. Moradi, G. Nabiyouni, D. Ghanbari, J. Mater. Sci. Mater. Electron. 29, 11065 (2018)

    Article  Google Scholar 

  41. S. Zinatloo-Ajabshir, S. Mortazavi-Derazkola, M. Salavati-Niasari, J. Mol. Liq. 231, 306 (2017)

    Article  Google Scholar 

  42. N. Zhang, X. Fu, Y.J. Xu, J. Mater. Chem. 21, 8152 (2011)

    Article  Google Scholar 

  43. M.M. Khan, S.A. Ansari, J.H. Lee, M.O. Ansari, J. Lee, M.H. Cho, J. Colloid Interface Sci. 431, 255 (2014)

    Article  Google Scholar 

  44. W. Lei, T. Zhang, L. Gu, P. Liu, J.A. Rodriguez, G. Liu, M. Liu, ACS Catal 5, 4385 (2015)

    Article  Google Scholar 

  45. B. Sepúlveda, P.C. Angelomé, L.M. Lechuga, L.M.L. Marzán, Nano Today 4, 244 (2009)

    Article  Google Scholar 

  46. S.S. Li, Semicond. Phys. Electron. (1993)

  47. T. Tatsuma, H. Nishi, T. Ishida, Chem. Sci. 8, 3325 (2017)

    Article  Google Scholar 

  48. R. Sahoo, A. Roy, C. Ray, C. Mondal, Y. Negishi, S.M. Yusuf, A. Pal, T. Pal, J. Phys. Chem. C 118, 11485 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Malayer University (Grant No.: 84/5-228).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Kazazi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kazazi, M., Moradi, B. & Delshad Chermahini, M. Enhanced photocatalytic degradation of methyl orange using Ag/Sn-doped CeO2 nanocomposite. J Mater Sci: Mater Electron 30, 6116–6126 (2019). https://doi.org/10.1007/s10854-019-00913-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00913-0

Navigation