Skip to main content
Log in

Preparation and effect of complexing agents on ternary FeZnS2 thin films by chemical bath deposition method for photo catalytic degradation of dye molecules

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In the present paper the studies on iron zinc sulphide thin films that have been deposited at room temperature on to the glass slides by chemical bath deposition technique using a solution mixture of ferrous sulphate, zinc sulphate, sodium sulphide, EDTA and Leishman stain is reported. Both EDTA and Leishman stain act as complexing agents and are expected to play a main role in the growth of FeZnS2 thin films. The structure of FeZnS2 thin films analysed by X-ray diffraction (XRD) study reveal that the thin films have a multi crystalline feature together with a solid three dimensional appearances at room temperature. The microstructure and the surface texture of the deposited filmsare characterised using scanning electron microscopy (SEM) and atomic force microscopy (AFM). The SEM images show that the deposited films have a fine texture due to the presence of complexing agents. AFM studies revealed that the grain size of the deposited films to be around 80–100 nm with the thickness being approximately uniform. FTIR spectral studies of the thin films were recorded between 400 and 7000 cm−1. FeZnS2 thin films illustrated excellent optical properties with great absorbance in the visible region. The band gap value found to be 2.37–2.77 eV. The Hall Effect measurements show that the FeZnS2 thin films to have a n-type behaviour which exhibits p-type behaviour after the addition of complexing agents which is an ideal condition for solar cell applications. Towards this direction, the photo catalytic activities of FeZnS2 thin films were also assessed by the degradation of crystal violet, malachite green and methylene blue in aqueous solution under sun light irradiation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. T.C.M. Santhosh, K.V. Bangeraa, G.K. Shivakumar, Mater. Sci. Semicond. Process. 68, 114 (2017)

    Article  Google Scholar 

  2. M. Imran, A. Saleem, N.A. Khan, A.A. Khurram, N. Mehmood, Thin Solid Films 648, 31 (2018)

    Article  Google Scholar 

  3. A. Karimi, B. Sohrabi, M.R. Vaezi, Thin Solid Films 651, 97 (2018)

    Article  Google Scholar 

  4. M.S. Al-Kotb, Z. Jumana, M.F. Al-Waheidi, Kotkata, Thin Solid Films 631, 219 (2017)

    Article  Google Scholar 

  5. Y. Xie, Thin Solid Films 598, 115 (2016)

    Article  Google Scholar 

  6. V. Kumar, J.K. Singh, G.M. Prasad, Ind. J. Pure Appl. Phys. 53, 429 (2015)

    Google Scholar 

  7. J. Kennedy, P.P. Murmu, J. Leveneur, G.V.M. Williams, R.L. Moody, T. Maity, S.V. Chong, J. Nanosci. Nanotechnol. 18, 1384 (2018)

    Article  Google Scholar 

  8. S. Chander, M.S. Dhaka, Thin Solid Films 638, 179 (2017)

    Article  Google Scholar 

  9. A. Mutalikdesai, S.K. Ramasesha, Thin Solid Films 632, 73 (2017)

    Article  Google Scholar 

  10. E.A. Sanchez-Ramirez, M.A. Hernandez-Perez, J.R. Aguilar-Hernandez, G. Contreras-Puente, Mater. Chem. Phys. 165, 119 (2015)

    Article  Google Scholar 

  11. B.E. Jones, P.J. Schlosser, J. De Jesus, T.A. Garcia, M.C. Tamargo, J.E. Hastie, Thin Solid Films 590, 84 (2015)

    Article  Google Scholar 

  12. G. Hodes, Nature 285, 29 (1980)

    Article  Google Scholar 

  13. K. Kaviyarasu, C.M. Magdalane, K. Kanimozhi, J. Kennedy, B. Siddhardha, J. Photochem. Photobiol. B 173, 466 (2017)

    Article  Google Scholar 

  14. R.J. Mendelsberg, J. Kennedy, S.M. Durbin, R.J. Reeves, Curr. Appl. Phys. 8(3–4), 283 (2008)

    Article  Google Scholar 

  15. K. Nair, M.T.S. Nair, Semicond. Sci. Technol. 7, 239 (1992)

    Article  Google Scholar 

  16. A. Cruz-Vazquez, F. Rocha-Alonzo, S.E. Burruel-Ibarra, M. Inoue, R. Bernal, Superficies Y Vacio 13, 89 (2001)

    Google Scholar 

  17. J. Woon-Jo, P. Cye-Choon, Sol. Energy Mater. Sol. Cells 75, 93 (2003)

    Article  Google Scholar 

  18. M. Bronold, S. Kubala, C. Pettenkofer, W. Jaegermann, Thin Solid Films 304, 178 (1991)

    Article  Google Scholar 

  19. C.C. Uhuegbu, J. Basic Appl. Sci. Res. 1(4), 307 (2011)

    Google Scholar 

  20. E. Anuja, K. Manikandan, R. Thiruneelakandan, J. Mater. Sci.: Mater. Electron. 29(12), 9886 (2018)

    Google Scholar 

  21. Y. Jerlin Jose, M. Manjunathan, S. Joseph Selvaraj, J. Nanostruct. Chem. 7, 259 (2017)

    Article  Google Scholar 

  22. L. Ren, Y. Li, J. Hou, X. Zhao, C. Pan, ACS Appl. Mater. Interfaces 6(3), 1608 (2014)

    Article  Google Scholar 

  23. V. Mahalingam, J. Thirumalai, R. Krishnan, R. Chandramohan, Electron. Mater. Lett. 12(1), 32 (2016)

    Article  Google Scholar 

  24. R. Thiagarajan, M. Anusuya, M. Mahaboob Beevi, J. Am. Sci. 5, 51 (2009)

    Google Scholar 

  25. L. Arun Raja, P. Thirumoorthy, A. Karthik, R. Subramanian, V. Rajendran, J. Alloys Compd. 706, 470 (2017)

    Article  Google Scholar 

  26. T.J. Whang, M.T. Hsieh, Y.C. Kao, S.J. Lee, Appl. Surf. Sci. 255(8), 4600 (2009)

    Article  Google Scholar 

  27. J.S. Bow, S.C. Liou, S.Y. Chen, Biomaterials 25, 3155 (2004)

    Article  Google Scholar 

  28. G. Rijnders, D.H.A. Blank, Pulsed Laser Deposition of Thin Films—Applications-LED Growth of Functional Materials (Wiley, Hoboken, 2007), pp. 177

    Google Scholar 

  29. P.C. Huang, W.C. Yang, M.W. Lee, J. Phys. Chem. C117, 18308 (2013)

    Google Scholar 

  30. M. Swarupkumar, D. Amitkumar, B. Papu, K. Basudeb, M. Anup, A. Bibhutosh, Sens. Actuators B 166–167, 726 (2012)

    Google Scholar 

  31. J. Kennedy, P.P. Murmu, J. Leveneur, A. Markwitz, J. Futter, Appl. Surf. Sci. 367, 52 (2016)

    Article  Google Scholar 

  32. Z. Yang, Z.Z. Ye, Z. Xu, B.H. Zhao, Physica E 42(2), 116 (2009)

    Article  Google Scholar 

  33. T. Ivanova, A. Harizanova, T. Koutzarova, B. Vertruyen, Mater. Lett. 64, 1147 (2010)

    Article  Google Scholar 

  34. Y.J. Kwon, K.H. Kim, C.S. Lim, K.B. Shim, J. Ceram. Proc. Res. 3, 146 (2002)

    Google Scholar 

  35. S. Sakthivel, B. Nepolian, M.V. Shankar, M. Palanichamy, B. Arabindoo, V. Murugesan, Sol. Energy Mater. Sol. Cells 77, 65 (2003)

    Article  Google Scholar 

  36. A. Mobeen Amanulla, S.K. Jasmine Shahina, R. Sundaram, C. Maria Magdalane, K. Kaviyarasu, D. Letsholathebe, S.B. Mohamed, J. Kennedy, M. Maaza, J. Photochem. Photobiol. B 183, 233 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

We thank Kalasalingam University, Anandnagar, Krishnankoil, Virudhunagar, Tamilnadu for having provided SEM, XRD Facilities and we also acknowledge SASTRA University, Thanjavurwhich provided providing Hall effects measurements. We thank Anna University, Chennai for their help in AFM facilities for carrying out this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Thiruneelakandan.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gayathri, G.D., Manikandan, K. & Thiruneelakandan, R. Preparation and effect of complexing agents on ternary FeZnS2 thin films by chemical bath deposition method for photo catalytic degradation of dye molecules. J Mater Sci: Mater Electron 30, 6023–6036 (2019). https://doi.org/10.1007/s10854-019-00903-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00903-2

Navigation