Skip to main content
Log in

Achieving thermally stable supercapacitors with a temperature responsive electrolyte

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Thermally stable electrochemical devices are ideal due to their stabilized performance and longer service life at extreme temperatures. However, ageing in supercapacitors, which is caused by generation of heat induced by high voltage, current, temperature, and aided by temperature induced self-accelerating reactions, plague the performance and lead to shortened service life. Poly(N-isopropylacrylamide) (PNIPAM) has been one of the most studied temperature responsive polymers (TRPs) in the past decades; it has a lower critical solution temperature (LCST) around 32 °C. By integrating PNIPAM into aqueous electrolyte, it was found that once LCST is reached, the specific capacitance of supercapacitors is reduced, which is accredited to drag of ion migration and precipitated polymer chains reside upon electrode surface. The capacitance reduction is even more obvious when the electrolyte solute changed into large size solute potassium ferricyanide. In terms of specific capacitance, comparing to an increase of the control, the PNIPAM integrated systems experienced a decrease under 70 °C. The integration of TRPs into electrochemical systems offers alternative approach to suppress high temperature capacitive reactions and ageing, thus could guarantee longer service life, performance stabilized supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014)

    Article  Google Scholar 

  2. Z. Chen, P.-C. Hsu, J. Lopez, Y. Li, J.W.F. To, N. Liu, C. Wang, S.C. Andrews, J. Liu, Y. Cui, Z. Bao, Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nat. Energy 1(1), 15009 (2016)

    Article  Google Scholar 

  3. V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7(5), 1597 (2014)

    Article  Google Scholar 

  4. R. Kötz, P.W. Ruch, D. Cericola, Aging and failure mode of electrochemical double layer capacitors during accelerated constant load tests. J. Power Sources 195(3), 923–928 (2010)

    Article  Google Scholar 

  5. O. Bohlen, J. Kowal, D.U. Sauer, Ageing behaviour of electrochemical double layer capacitors. J. Power Sources 172(1), 468–475 (2007)

    Article  Google Scholar 

  6. O. Bohlen, J. Kowal, S. Dirk Uwe, Ageing behaviour of electrochemical double layer capacitors: part II. Lifetime simulation model for dynamic applications. J. Power Sources 173(1), 626–632 (2007)

    Article  Google Scholar 

  7. P. Azaïs, L. Duclaux, P. Florian, D. Massiot, M.-A. Lillo-Rodenas, A. Linares-Solano, J.-P. Peres, C. Jehoulet, F. Béguin, Causes of supercapacitors ageing in organic electrolyte. J. Power Sources 171(2), 1046–1053 (2007)

    Article  Google Scholar 

  8. M.A. Stuart, W.T. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G.B. Sukhorukov, I. Szleifer, V.V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, S. Minko, Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9(2), 101–113 (2010)

    Article  Google Scholar 

  9. X. Deng, Y. Chen, Z. Cheng, K. Deng, Z. Hou, B. Liu, S. Huang, D. Jin, J. Lin, Rational design of a comprehensive cancer therapy platform using temperature-sensitive polymer grafted hollow gold nanospheres: simultaneous chemo/photothermal/photodynamic therapy triggered by a 650 nm laser with enhanced anti-tumor efficacy. Nanoscale 8(12), 6837–6850 (2016)

    Article  Google Scholar 

  10. S. Ashraf, H.-K. Park, H. Park, S.-H. Lee, Snapshot of phase transition in thermoresponsive hydrogel PNIPAM: role in drug delivery and tissue engineering. Macromol. Res. 24(4), 297–304 (2016)

    Article  Google Scholar 

  11. S. Nagata, K. Kokado, K. Sada, Metal-organic framework tethering PNIPAM for ON–OFF controlled release in solution. Chem. Commun. 51(41), 8614–8617 (2015)

    Article  Google Scholar 

  12. X.-Z. Zhang, X.-D. Xu, S.-X. Cheng, R.-X. Zhuo, Strategies to improve the response rate of thermosensitive PNIPAAm hydrogels. Soft Matter 4(3), 385 (2008)

    Article  Google Scholar 

  13. H.G. Schild, Poly(N-isopropylacrylamide): experiment, theory and application. Prog. Polym. Sci. 17(2), 163–249 (1992)

    Article  Google Scholar 

  14. M. Heskins, J.E. Guillet, Solution properties of poly(N-isopropylacrylamide). J. Macromol. Sci.-Chem. 2(8), 1441–1455 (1968)

    Article  Google Scholar 

  15. G. Zhang, C. Wu, Quartz crystal microbalance studies on conformational change of polymer chains at interface. Macromol. Rapid Commun. 30(4–5), 328–335 (2009)

    Article  Google Scholar 

  16. Y. Zhang, S. Furyk, L.B. Sagle, Y. Cho, D.E. Bergbreiter, P.S. Cremer, Effects of Hofmeister anions on the LCST of PNIPAM as a function of molecular weight. J. Phys. Chem. C 111, 8916–8924 (2007)

    Article  Google Scholar 

  17. X. Zhu, C. Yan ,F.M. Winnik, D. Leckband, End-grafted low-molecular-weight PNIPAM does not collapse above the LCST. Langmuir 23, 162–169 (2006)

    Article  Google Scholar 

  18. K.N. Plunkett. X. Zhu, J.S. Moore, D.E. Leckband, PNIPAM chain collapse depends on the molecular weight and grafting density. Langmuir 22, 4259–4266 (2006)

    Article  Google Scholar 

  19. Y. Zhang, S. Furyk, D.E. Bergbreiter, P.S. Cremer, Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. J. Am. Chem. Soc. 127, 14505–14510 (2005)

    Article  Google Scholar 

  20. A. Hijazi, P. Kreckzanik, E. Bideaux, P. Venet, G. Clerc, M. Di Loreto, Thermal network model of supercapacitors stack. IEEE Transac. Ind. Electron. 59 (2):979–987 (2012)

    Article  Google Scholar 

  21. L. Sheeney Haj Ichia, G. Sharabi, I. Willner, Control of the electronic properties of thermosensitive poly(N-isopropylacrylamide) and Au-nano-particle/poly(N-isopropylacrylamide) composite hydrogels upon phase transition. Adv. Func. Mater. 12(1), 27–32 (2002)

    Article  Google Scholar 

  22. Y. Shi, H. Ha, A. Al-Sudani, C.J. Ellison, G. Yu, Thermoplastic elastomer-enabled smart electrolyte for thermoresponsive self-protection of electrochemical energy storage devices. Adv. Mater. 28(36), 7921–7928 (2016)

    Article  Google Scholar 

  23. H. Yang, Z. Liu, B.K. Chandran, J. Deng, J. Yu, D. Qi, W. Li, Y. Tang, C. Zhang, X. Chen, Self-protection of electrochemical storage devices via a thermal reversible sol-gel transition. Adv. Mater. 27(37), 5593–5598 (2015)

    Article  Google Scholar 

  24. J.C. Kelly, D.L. Huber, A.D. Price, M.E. Roberts, Switchable electrolyte properties and redox chemistry in aqueous media based on temperature-responsive polymers. J. Appl. Electrochem. 45(8), 921–930 (2015)

    Article  Google Scholar 

  25. J.C. Kelly, M. Pepin, D.L. Huber, B.C. Bunker, M.E. Roberts, Reversible control of electrochemical properties using thermally-responsive polymer electrolytes. Adv. Mater. 24(7), 886–889 (2012)

    Article  Google Scholar 

  26. J.C. Kelly, R. Gupta, M.E. Roberts, Responsive electrolytes that inhibit electrochemical energy conversion at elevated temperatures. J. Mater. Chem. A 3(7), 4026–4034 (2015)

    Article  Google Scholar 

  27. X. Wang, X. Qiu, C. Wu, Comparison of the coil-to-globule and the globule-to-coil transitions of a single poly(N-isopropylacrylamide) homopolymer chain in water. Macromolecules 31(9), 2972–2976 (1998)

    Article  Google Scholar 

  28. G. Perenlei, T.W. Tee, N.A. Yusof, G.J. Kheng, Voltammetric detection of potassium ferricyanide mediated by multi-walled carbon nanotube/titanium dioxide composite modified glassy carbon electrode. Int. J. Electrochem. Sci. 6, 520–531 (2011)

    Google Scholar 

  29. H. Yang, W.R. Leow, X. Chen, Thermal-responsive polymers for enhancing safety of electrochemical storage devices. Adv. Mater. 30, e1704347 (2018)

    Article  Google Scholar 

  30. J. Shen, K. Han, E.J. Martin, Y.Y. Wu, M.C. Kung, C.M. Hayner, K.R. Shull, H.H. Kung, Upper-critical solution temperature (UCST) polymer functionalized graphene oxide as thermally responsive ion permeable membrane for energy storage devices. J. Mater. Chem. A 2(43), 18204–18207 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Ms. Kim Ivey for assistance with GPC measurement and the Department of Materials Science and Engineering and the Department of Chemical and Biomolecular Engineering of Clemson University for funding support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark E. Roberts.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 114 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, H., Roberts, M.E. Achieving thermally stable supercapacitors with a temperature responsive electrolyte. J Mater Sci: Mater Electron 30, 6007–6014 (2019). https://doi.org/10.1007/s10854-019-00900-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00900-5

Navigation