Skip to main content
Log in

A novel non-enzymatic dopamine sensors based on NiO-reduced graphene oxide hybrid nanosheets

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Ni(OH)2 nanoflakes (NFs) and graphene oxide (GO) nanosheets were prepared by a hydrothermal process and the modified Hummer’s method, respectively. Then, Ni(OH)2 NFs were dispersed in the GO suspension with the assistance of ultrasonic. Finally, the mixed colloidal solution was uniformly sprayed onto the surface of indium tin oxide (ITO) glass and annealed to obtain the NiO-reduced GO (RGO)/ITO electrode, which subsequently used for electrochemical sensing of dopamine (DA) analyte. The NiO-RGO/ITO electrode exhibits enhanced electrochemical response in the aqueous solution of DA analyte, which shows a high sensitivity (1.04 µA µM− 1), the lower measured detection limit (1 µM). The NiO-RGO/ITO electrode also exhibits an excellent selectivity under the interference of uric acid, repeatability and stability. The prepared sensor has been successfully applied in real samples and has a great potential to be used in clinical medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.J. Sanghavi, S.M. Mobin, P. Mathur, G.K. Lahiri, A.K. Srivastava, Biomimetic sensor for certain catecholamines employing copper (II) complex and silver nanoparticle modified glassy carbon paste electrode. Biosens. Bioelectron. 39, 124–132 (2013)

    Article  Google Scholar 

  2. A. Liu, M.D. Wei, I. Honma, H. Zhou, Biosensing properties of titanate nanotube films: selective detection of dopamine in the presence of ascorbate and uric acid. Adv. Funct. Mater. 16, 371–376 (2006)

    Article  Google Scholar 

  3. M. Zhang, C. Liao, Y. Yao, Z. Liu, F. Gong, F. Yan, High-performance dopamine sensors based on whole-graphene solution-gated transistors. Adv. Funct. Mater. 24, 978–985 (2014)

    Article  Google Scholar 

  4. W. Deng, X. Yuan, Y. Tan, M. Ma, Q. Xie, Three-dimensional graphene-like carbon frameworks as a new electrode material for electrochemical determination of small biomolecules. Biosens. Bioelectron. 85, 618–624 (2016)

    Article  Google Scholar 

  5. A. Roychoudhury, S. Basu, S.K. Jha, Dopamine biosensor based on surface functionalized nanostructured nickel oxide platform. Biosens. Bioelectron. 84, 72–81 (2016)

    Article  Google Scholar 

  6. K. Ghanbari, M. Moloudi, Flower-like ZnO decorated polyaniline/reduced graphene oxide nanocomposites for simultaneous determination of dopamine and uric acid. Analy. Biochem. 512, 91–102 (2016)

    Article  Google Scholar 

  7. X. Luo, Z. Zhang, Q. Wan, K. Wu, N. Yang, Lithium-doped NiO nanofibers for non-enzymatic glucose sensing. Electrochem. Commun. 61, 89–92 (2015)

    Article  Google Scholar 

  8. Z.H. Ibupoto, A. Nafady, R.A. Soomro, S. Sirajuddin, S.T. Hussain Sherazi, M.I. Abro et al., Glycine-assisted synthesis of NiO hollow cage-like nanostructures for sensitive non-enzymatic glucose sensing. RSC Adv. 5, 18773–18781 (2015)

    Article  Google Scholar 

  9. R. Ramasamy, K. Ramachandran, G.G. Philip, R. Ramachandran, H.A. Therese, G. Gnana kumar, Design and development of Co3O4/NiO composite nanofibers for the application of highly sensitive and selective non-enzymatic glucose sensors. RSC Adv. 5, 76538–76547 (2015)

    Article  Google Scholar 

  10. H. Zhu, L. Li, W. Zhou, Z. Shao, X. Chen, Advances in non-enzymatic glucose sensors based on metal oxides. J. Mater. Chem. B 4, 7333–7349 (2016)

    Article  Google Scholar 

  11. P. Si, X.C. Dong, P. Chen, D.H. Kim, A hierarchically structured composite of Mn3O4/3D graphene foam for flexible nonenzymatic biosensors. J. Mater. Chem. B 1, 110–115 (2013)

    Article  Google Scholar 

  12. C. Xiong, T. Zhang, W. Kong, Z. Zhang, H. Qu, W. Chen et al., ZIF-67 derived porous Co3O4 hollow nanopolyhedron functionalized solution-gated graphene transistors for simultaneous detection of glucose and uric acid in tears. Biosens. Bioelectron. 101, 21–28 (2017)

    Article  Google Scholar 

  13. H.Y. Yue, S. Huang, J. Chang, C. Heo, F. Yao, S. Adhikari et al., ZnO nanowire arrays on 3D hierachical graphene foam: biomarker detection of Parkinson’s disease. Acs Nano 8, 1639–1646 (2014)

    Article  Google Scholar 

  14. Y. Ding, Y. Liu, J. Parisi, L. Zhang, Y. Lei, A novel NiO-Au hybrid nanobelts based sensor for sensitive and selective glucose detection. Biosens. Bioelectron. 28, 393–398 (2011)

    Article  Google Scholar 

  15. H. Wu, M. Xu, H. Wu, J. Xu, Y. Wang, Z. Peng et al., Aligned NiO nanoflake arrays grown on copper as high capacity lithium-ion battery anodes. J. Mater. Chem. 22, 19821–19825 (2012)

    Article  Google Scholar 

  16. F. Cao, S. Guo, H. Ma, D. Shan, S. Yang, J. Gong, Nickel oxide microfibers immobilized onto electrode by electrospinning and calcination for nonenzymatic glucose sensor and effect of calcination temperature on the performance. Biosens. Bioelectron. 26, 2756–2760 (2011)

    Article  Google Scholar 

  17. M. Tyagi, M. Tomar, V. Gupta, NiO nanoparticle-based urea biosensor. Biosens. Bioelectron. 41, 110–115 (2013)

    Article  Google Scholar 

  18. Q. Li, Q. Wei, L. Xie, C. Chen, C. Lu, F.-Y. Su et al., Layered NiO/reduced graphene oxide composites by heterogeneous assembly with enhanced performance as high-performance asymmetric supercapacitor cathode. RSC Adv. 6, 46548–46557 (2016)

    Article  Google Scholar 

  19. C. Wang, J. Xu, M.-F. Yuen, J. Zhang, Y. Li, X. Chen et al., Hierarchical composite electrodes of nickel oxide nanoflake 3D graphene for high-performance pseudocapacitors. Adv. Func. Mater. 24, 6372–6380 (2014)

    Article  Google Scholar 

  20. H.Y. Yue, S.S. Song, S. Huang, H. Zhang, X.P.A. Gao, X. Gao et al., Preparation of MoS2-graphene hybrid nanosheets and simultaneously electrochemical determination of levodopa and uric acid. Electroanal. 29, 2565–2571 (2017)

    Article  Google Scholar 

  21. M. Khan, M.N. Tahir, S.F. Adil, H.U. Khan, M.R.H. Siddiqui, A.A. Al-warthan et al., Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. J. Mater. Chem. A 3, 18753–18808 (2015)

    Article  Google Scholar 

  22. D. Chen, H. Feng, J. Li, Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112, 6027–6053 (2012)

    Article  Google Scholar 

  23. N. Ye, Z. Wang, S. Wang, H. Fang, D. Wang, Aqueous aggregation and stability of graphene nanoplatelets, graphene oxide, and reduced graphene oxide in simulated natural environmental conditions: complex roles of surface and solution chemistry. Environ. Sci. Pollut. R. 25, 10956–10965 (2018)

    Article  Google Scholar 

  24. C. Wang, Y. Sun, X. Yu, D. Ma, J. Zheng, P. Dou et al., Ag–Pt hollow nanoparticles anchored reduced graphene oxide composites for non-enzymatic glucose biosensor. J. Mater. Sci. 27, 9370–9378 (2016)

    Google Scholar 

  25. S. Verma, A. Singh, A. Shukla, J. Kaswan, K. Arora, J. Ramirez-Vick et al., Anti-IL8/AuNPs-rGO/ITO as an immunosensing platform for noninvasive electrochemical detection of oral cancer. ACS Appl. Mater. Inter. 9, 27462–27474 (2017)

    Article  Google Scholar 

  26. J.H. Ko, S. Yeo, J.H. Park, J. Choi, C. Noh, S.U. Son, Graphene-based electrochromic systems: the case of Prussian Blue nanoparticles on transparent graphene film. Chem. Commun. 48, 3884–3886 (2012)

    Article  Google Scholar 

  27. J. Shen, Y. Hu, M. Shi, X. Lu, C. Qin, C. Li et al., Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chem. Mater. 21, 3514–3520 (2009)

    Article  Google Scholar 

  28. H.Y. Yue, H. Zhang, J. Chang, X. Gao, S. Huang, L.H. Yao et al., Highly sensitive and selective uric acid biosensor based on a three-dimensional graphene foam/indium tin oxide glass electrode. Anal. Biochem. 488, 22–27 (2015)

    Article  Google Scholar 

  29. Y.Y. Hong, Z. Hong, S. Huang, Y.L. Xuan, G. Xin, C. Jing et al., Synthesis of ZnO nanowire arrays/3D graphene foam and application for determination of levodopa in the presence of uric acid. Biosens. Bioelectron. 89, 592–597 (2016)

    Google Scholar 

  30. H.Y. Yue, B. Wang, S. Huang, X. Gao, X.Y. Lin, L.H. Yao et al., Determination of levodopa in the presence of uric acid using a ZnO nanoflower-modified indium tin oxide glass electrode. Ionics. 23, 1–8 (2017)

    Article  Google Scholar 

  31. S.S. Choo, E.S. Kang, I. Song, D. Lee, J.W. Choi, T.H. Kim, Electrochemical detection of dopamine using 3D porous graphene oxide/gold nanoparticle composites. Sensors. 861, 1–11 (2017)

    Google Scholar 

  32. D. Zhao, G. Yu, K. Tian, C. Xu, A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy. Biosens. Bioelectron. 82, 119–126 (2016)

    Article  Google Scholar 

  33. J. Chen, P. He, H. Bai, S. He, T. Zhang, X. Zhang et al., Poly(β-cyclodextrin)/carbon quantum dots modified glassy carbon electrode: preparation, characterization and simultaneous electrochemical determination of dopamine, uric acid and tryptophan. Sensor. Actuat. B 252, 9–16 (2017)

    Article  Google Scholar 

  34. R. Chen, Y. Wang, Y. Liu, J. Li, Selective electrochemical detection of dopamine using nitrogen-doped graphene/manganese monoxide composites. RSC Adv. 5, 85065–85072 (2015)

    Article  Google Scholar 

  35. T. Yang, H. Chen, C. Jing, S. Luo, W. Li, K. Jiao, Using poly(m-aminobenzenesulfonic acid)-reduced MoS2 nanocomposite synergistic electrocatalysis for determination of dopamine. Sensor. Actuat. B 249, 451–457 (2017)

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from the Ministry of Personnel of China (2015192), Postdoctoral Initial Founding of Heilongjiang Province (LBH-Q14117), Technology Foundation for Selected Overseas Chinese Scholar, Science Funds for the Young Innovative Talents of HUST (201604) and the Innovative Talent Fund of Harbin city (2016RAQXJ185).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Yan Yue.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 506 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yue, H.Y., Zhang, H.J., Huang, S. et al. A novel non-enzymatic dopamine sensors based on NiO-reduced graphene oxide hybrid nanosheets. J Mater Sci: Mater Electron 30, 5000–5007 (2019). https://doi.org/10.1007/s10854-019-00796-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00796-1

Navigation