Skip to main content
Log in

One-step in situ hydrothermal preparation of graphene–SnO2 nanohybrid for superior dopamine detection

  • Research Article
  • Published:
Journal of Applied Electrochemistry Aims and scope Submit manuscript

Abstract

In this work, we report a facile and one -step hydrothermal method to decorate SnO2 nanostructures on few-layered graphene for superior dopamine detection. The structural and morphological properties of the prepared nanohybrids illustrated the tetragonal crystal system of SnO2, reconstruction of graphene layers with oxygen containing functional groups, increased ID/IG ratio, and uniform decoration of SnO2 nanostructures on graphene layers. The prepared nanohybrids exhibited a high electrochemical activity toward dopamine oxidation in comparison with individual graphene sheets. This enhanced performance can be due to the presence of SnO2 nanostructures between the graphene layers, which efficiently avoid the restacking and increase the surface area accessibility. The fabricated nanohybrid-based sensor showed an increase in current with respect to the increased analyte concentration over the wide range of 0.005–0.20 × 10−6 M. The sensor exhibits excellent catalytic activity toward dopamine with the lowest detection limit of 6.3 nm. Further, the modified electrode exhibited good stability, reproducibility, and better recovery of 99 % in human urine samples suggesting the real-time usability of the sensor.

Graphical Abstract

Schematic representation of SnO2 nanohybrids formation. The modified electrode exhibits superior catalytic activity. The oxidation peak current increased linearly in the concentration range of 0.005–0.019 × 10−6 M with LOD of 6.3 nm.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV (2004) Electric field effect in atomically thin carbon films. Science 306:666–669. doi:10.1126/science.1102896

    Article  CAS  PubMed  Google Scholar 

  2. Zhu J, Chen M, He Q, Shao L, Wei S, Guo Z (2013) An overview of the engineered graphene nanostructures and nanocomposites. RSC Adv 3:22790. doi:10.1039/c3ra44621b

    Article  CAS  Google Scholar 

  3. Khan M, Tahir MN, Adil SF, Khan HU, Siddiqui MRH, Al-warthan AA et al (2015) Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications. J Mater Chem A 3:18753–18808. doi:10.1039/C5TA02240A

    Article  CAS  Google Scholar 

  4. Galvan A, Wichmann T (2008) Pathophysiology of Parkinsonism. Clin Neurophysiol 119:1459–1474. doi:10.1016/j.clinph.2008.03.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Wightman RM, May LJ, Michael AC (1988) Detection of dopamine dynamics in the brain. Anal Chem 60:769A–779A

    Article  CAS  Google Scholar 

  6. Jackowska K, Krysinski P (2012) New trends in the electrochemical sensing of dopamine. Anal Bioanal Chem 405:3753–3771. doi:10.1007/s00216-012-6578-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Yang L, Liu D, Huang J, You T (2014) Simultaneous determination of dopamine, ascorbic acid and uric acid at electrochemically reduced graphene oxide modified electrode. Sensors Actuators B Chem 193:166–172. doi:10.1016/j.snb.2013.11.104

    Article  CAS  Google Scholar 

  8. Pandikumar A, Soon How GT, See TP, Omar FS, Jayabal S, Kamali KZ et al (2014) Graphene and its nanocomposite material based electrochemical sensor platform for dopamine. RSC Adv 4:63296–63323. doi:10.1039/C4RA13777A

    Article  CAS  Google Scholar 

  9. Pingarrn JM, Sedeo PY, Gonzlez-Corts A (2008) Gold nanoparticle-based electrochemical biosensors. Electrochim Acta 53:5848–5866. doi:10.1016/j.electacta.2008.03.005

    Article  CAS  Google Scholar 

  10. Kuang Q, Lao C, Wang ZL, Xie Z, Zheng L (2007) High-sensitivity humidity sensor based on a single SnO2 nanowire. J Am Chem Soc 129:6070–6071. doi:10.1021/ja070788m

    Article  CAS  PubMed  Google Scholar 

  11. Kaniyoor A, Baby TT, Ramaprabhu S (2010) Graphene synthesis via hydrogen induced low temperature exfoliation of graphite oxide. J Mater Chem 20:8467–8469

    Article  CAS  Google Scholar 

  12. Pullamsetty A, Subbiah M, Sundara R (2015) Platinum on boron doped graphene as cathode electrocatalyst for proton exchange membrane fuel cells. Int J Hydrogen Energy 40:10251–10261. doi:10.1016/j.ijhydene.2015.06.020

    Article  CAS  Google Scholar 

  13. Zhang M, Lei D, Du Z, Yin X, Chen L, Li Q et al (2011) Fast synthesis of SnO2/graphene composites by reducing graphene oxide with stannous ions. J Mater Chem 21:1673–1676. doi:10.1039/C0JM03410J

    Article  CAS  Google Scholar 

  14. Ferrari AC, Robertson J (2000) Interpretation of Raman spectra of disordered and amorphous carbon. Phys Rev B 61:14095–14107. doi:10.1103/PhysRevB.61.14095

    Article  CAS  Google Scholar 

  15. Sripada R, Bhagavathi Parambath V, Baro M, Nagappan Nair SP, Sundara R (2015) Platinum and platinum–iron alloy nanoparticles dispersed nitrogen-doped graphene as high performance room temperature hydrogen sensor. Int J Hydrogen Energy 40:10346–10353. doi:10.1016/j.ijhydene.2015.06.018

    Article  CAS  Google Scholar 

  16. Wang H, Maiyalagan T, Wang X (2012) Review on recent progress in nitrogen-doped graphene: synthesis, characterization, and its potential applications. ACS Catal 2:781–794. doi:10.1021/cs200652y

    Article  CAS  Google Scholar 

  17. Liang J, Wei W, Zhong D, Yang Q, Li L, Guo L (2012) One-step in situ synthesis of SnO2/graphene nanocomposites and its application as an anode material for Li-ion batteries. ACS Appl Mater Interfaces 4:454–459. doi:10.1021/am201541s

    Article  CAS  PubMed  Google Scholar 

  18. Yu KN, Xiong Y, Liu Y, Xiong C (1997) Microstructural change of nano- SnO2 grain assemblages with the annealing temperature. Phys Rev B 55:2666–2671. doi:10.1103/PhysRevB.55.2666

    Article  CAS  Google Scholar 

  19. Seema H, Christian Kemp K, Chandra V, Kim KS (2012) Graphene-SnO2 composites for highly efficient photocatalytic degradation of methylene blue under sunlight. Nanotechnology 23:355705. doi:10.1088/0957-4484/23/35/355705

    Article  CAS  PubMed  Google Scholar 

  20. Gu F, Wang SF, Song CF, Qi YX, Zhou GJ et al (2003) Synthesis and luminescence properties of SnO2 nanoparticles. Chem Phys Lett 372:451–454. doi:10.1016/S0009-2614(03)00440-8

    Article  CAS  Google Scholar 

  21. Baraneedharan P, Hussain SI, Dinesh VP, Siva C, Biji P, Sivakumar M (2015) Lattice doped Zn–SnO2 nanospheres: a systematic exploration of dopant ion effects on structural, optical, and enhanced gas sensing properties. Appl Surf Sci 357:1511–1521. doi:10.1016/j.apsusc.2015.09.257

    Article  CAS  Google Scholar 

  22. Ma HF, Chen TT, Luo Y, Kong FY, Fan DH, Fang HL, Wang W (2015) Electrochemical determination of dopamine using octahedral SnO2 nanocrystals bound to reduced reduced graphene oxide nanosheets. Microchim Acta 182:2001–2007

    Article  CAS  Google Scholar 

  23. Chen D, Feng H, Li J (2012) Graphene oxide: preparation, functionalization, and electrochemical applications. Chem Rev 112:6027–6053. doi:10.1021/cr300115g

    Article  CAS  PubMed  Google Scholar 

  24. Sajid M, Nazal MK, Mansha M, Alsharaa A, Jillani SMS, Basheer C (2016) Chemically modified electrodes for electrochemical detection of dopamine in the presence of uric acid and ascorbic acid: a review TrAC—Trends. Anal Chem 76:15–29. doi:10.1016/j.trac.2015.09.006

    Article  CAS  Google Scholar 

  25. Zhang H, He Q, Zhu X, Pan D, Deng X, Jiao Z (2012) Surfactant-free solution phase synthesis of monodispersed SnO2 hierarchical nanostructures and gas sensing properties. Cryst Eng Comm 14:3169. doi:10.1039/c2ce06558d

    Article  CAS  Google Scholar 

  26. Sun W, Wang X, Wang Y, Ju X, Xu L, Li G et al (2013) Application of graphene-SnO2 nanocomposite modified electrode for the sensitive electrochemical detection of dopamine. Electrochim Acta 87:317–322. doi:10.1016/j.electacta.2012.09.050

    Article  CAS  Google Scholar 

  27. Yang K, Xue Y, Zhang Y, Zhang XF, Zhao H, Li XJ et al (2013) A simple one-pot synthesis of graphene nanosheet/SnO2 nanoparticle hybrid nanocomposites and their application for selective and sensitive electrochemical detection of dopamine. J Mater Chem B 1:1804–1811. doi:10.1039/C3tb00513e

    Article  CAS  PubMed  Google Scholar 

  28. Zhang F, Li Y, Gu Y-e, Wang Z, Wang C (2011) One-pot solvothermal synthesis of a Cu2O/graphene nanocomposite and its application in an electrochemical sensor for dopamine. Microchim Acta 173:103–109. doi:10.1007/s00604-010-0535-6

    Article  CAS  Google Scholar 

  29. Yang J, Strickler JR, Gunasekaran S (2012) Indium tin oxide-coated glass modified with reduced graphene oxide sheets and gold nanoparticles as disposable working electrodes for dopamine sensing in meat samples. Nanoscale 4:4594. doi:10.1039/c2nr30618b

    Article  CAS  PubMed  Google Scholar 

  30. Sun CL, Lee HH, Yang JM, Wu CC (2011) The simultaneous electrochemical detection of ascorbic acid, dopamine, and uric acid using graphene/size-selected Pt nanocomposites. Biosens Bioelectron 26:3450–3455. doi:10.1016/j.bios.2011.01.023

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank SAIF, IIT Madras for providing the facility of HR-SEM and help in FTIR measurements. One of the authors, Dr. PB thanks CSIR-HRDG for providing support under the Scientist Pool Scheme (No.13(8778-A)/2015-Pool) and conveys heartfelt thanks to his lab colleagues for their support in this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ramaprabhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baraneedharan, P., Alexander, S. & Ramaprabhu, S. One-step in situ hydrothermal preparation of graphene–SnO2 nanohybrid for superior dopamine detection. J Appl Electrochem 46, 1187–1197 (2016). https://doi.org/10.1007/s10800-016-1001-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10800-016-1001-x

Keywords

Navigation